Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not without my microbes

19.12.2012
After metamorphosis European forest cockchafers benefit from the same bacterial symbionts housed during their larval stage.

Apart from the common European cockchafer (Melolontha melolontha), the European forest cockchafer (Melolontha hippocastani) is the most common species of the Melolontha genus. These insects can damage huge areas of broadleaf trees and conifers in woodlands and on heaths. Cockchafers house microbes in their guts that help them to digest their woody food, such as lignocelluloses and xylans.


Forest cockchafer larva (grub) feeding on a carrot. Grubs feed underground on the roots of trees during their three- to five-year larval stage.

Erika Arias Cordero/MPI Chem. Ecol.


European forest cockchafer (Melolontha hippocastani)

Erika Arias Cordero/MPI Chem. Ecol.

Scientists of the Max Planck Institute for Chemical Ecology in Jena, Germany, have now performed comprehensive RNA analyses and identified the microbiota of cockchafer larvae feeding on roots and of the adult beetles feeding on leaves. Surprisingly, the guts of adult beetles house the same microbial species that were present in the larval midgut − despite having metamorphosized from larva to beetle. These microbes include clostridia as well as other bacterial species that are as yet unknown. Moreover, only a small percentage of the microbes living in the gut originated from the roots or leaves the larvae or beetles were feeding on. These microbes seem to be characteristic bacterial symbionts with which the forest cockchafer has long been associated. (PLoS ONE, December 10, 2012; doi:10.1371/journal.pone.0051557)

Metamorphosis is a fascinating process: A caterpillar or larva, feeding on roots below-ground or leaves above-ground (depending on the species), turns into a butterfly or a beetle after pupation and quiescence. The cylindrical bodies of larvae are quite unspectacular in comparison to the colorful and delicate butterflies. It is usually the larvae that cause the most damage and threaten agricultural and silvicultural yields by feeding on plants. Among these herbivores is the European forest cockchafer (Melolontha hippocastani), a major pest of trees.

During the pupal stage the insects stop feeding completely. A fundamental transformation starts, a radical internal conversion that changes every single larval organ. The tissue and organs of the larva are converted into the new organs of the beetle. Yet the metamorphosis of some insect species is still not completely understood. What happens to the gut microbes that are needed for digesting plant tissues and therefore important for the insect’s survival as soon as the larva is transformed? Are there any bacteria present in the gut of the new beetle and if so, which?

PhD candidate Erika Arias-Cordero from Costa Rica addressed these questions. Thanks to modern and sensitive detection methods, she was able to get an overview of the microbial species present in the guts of larvae and adult beetles. In so-called culture-independent studies, more than 300 individual RNA sequence segments were identified that were assigned to the different taxa of known classes of microbes. Sequences of bacterial ribosomal RNA (16S rRNA) were determined that could be distinguished from insect RNA (18S rRNA). “Using this method, we could be pretty sure we had identified all classes of microbes present in the gut. A typical microbiological approach, for which bacteria from the gut would have to be cultivated first, cannot guarantee this, because we do not know the culture media, especially for microbial species we do not know yet,” says the scientist.

A total of nine different classes of bacteria were found in the cockchafer gut: Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, actinobacteria, bacilli, clostridia, erysipelotrichi, negativicutes and sphingobacteria. Some are able to digest lignocelluloses and xylans, typical wood components. Interestingly, many classes of bacteria that were identified in the larval midgut were also found − after metamorphosis − in the gut of the adult cockchafer, even though the larval gut completely empties during the pupal stage. Moreover, Arias-Cordero found that the gut microbiome of the larvae overlaps only minimally with the microbiome of soil and root material. In other words, most microbes present in the larvae and beetles do not originate from the digested food. “This means that the forest cockchafer per se, that is, the larva hatching from the egg, e.g. via secretions passed from the mother, already has a basic set of bacterial symbionts which this insect species has co-evolved with over thousands of years,” explains Wilhelm Boland, director at the institute.

This result confirms again the assumption that all higher organisms, such as plants, insects and animals (including humans), are equipped with microbial symbionts. Without these beneficial microbes, we could not live and survive; they must be classified as an integral part of our body.

Larvae and beetles, as well as soil, root and leaf samples, were collected in forests near Mannheim and Iffezheim. The Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg (Forest Research Center) in Freiburg and the Fritz Lipmann Institute in Jena were also involved in this research project. [JWK/AO]

Original Publication:
Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland, W. (2012) Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 7(12): e51557. DOI:10.1371/journal.pone.0051557

http://dx.doi.org/10.1371/journal.pone.0051557

Further Information:
Prof. Dr. Wilhelm Boland, MPI chemische Ökologie, boland@ice.mpg.de,
+49 (0)3641 57-1200

Picture and Movie Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de
or Download via http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/

More articles from Life Sciences:

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neurons migrate in the nascent brain as if on rails
17.12.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>