Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-gels from tiny Arctic and Antarctic ice algae play an important role in polar ocean carbon budgets

11.09.2013
Secretion of polysaccharides from the micro community living within the sea ice stick organism together and forms greater particles introducing a rapid transport of carbon to the seafloor. New research now makes it possible to forecast the importance for the global carbon budget of this transport

A community of microscopic algae and bacteria thrives within the Arctic and Antarctic pack ice. These ice-organisms are adapted to growing on the ice crystal surfaces and within a labyrinth of channels and pores that permeate the ice floes.


The ice algae secrete gel-like substances in response to environmental stress. New research show that this micro-gel play an important role in polar ocean carbon Budgets
(Photo: David Thomas)

It is a hostile place to grow with temperatures often at -10°C to -20°C, low light and within six or seven times more salty brines in the ice channels compared to the underlying seawater from where these organisms originate.

Many marine organisms secrete gel-like substances in response to environmental stress, and these ice-dwellers are no exception. In fact they secrete large quantities of gels that are made up from various types of polysaccharides.

A new study released in Proceedings of the National Academy of Science, now demonstrate that these gels from ice-microorganisms are important in both the Arctic and Antarctic. It is likely that they will not only affect the physical structure within the ice but also how carbon travels to the ocean floor and even the weather.

Sticky masses

The gels promote the clumping together of cells when they are released from the ice when it melts. These sticky masses fall more rapidly to the sea floor, taking carbon (and food) out of the surfaces waters.

There is also evidence that micro-gels at the ocean surface may get caught up into the air and eventually act as cloud condensing nuclei thereby affecting weather. The gels therefore have profound implications for both the long-term burial of carbon to the ocean floor and thus the global carbon budget and on the weather.

Since 2006 Professor Graham Underwood & Dr Shazia Aslam from University of Essex and Professor David Thomas from Arctic Research Centre, Aarhus University have led several projects (funded by the Natural Environment Research Council, UK) to study the production of micro-gels, and their widespread importance to the frozen realms of the worlds oceans. They teamed up with colleagues from Australia and Canada to collect and analyse ice cores from both the Arctic and Antarctic.

Seven years on, and many frozen trips later, they now publish a rather surprising finding. Analysing ice data spanning ice from both the Arctic and Antarctic, they are now able to determine the amounts of gel production from the ice microbes based on data of the physical nature of the ice and the amount of microbiology.

“It means that we can estimate the concentration of gels in ice, by knowing rather routine measurements such as the thickness of the ice floes, temperature and salinity of the ice and the quantity of ice biology measured as the chlorophyll content of the ice,” says Professor David Thomas, Arctic Research Centre, Aarhus University.

“This is a huge step forwards to enable us to estimate the significance of these materials to the millions of square kilometres of Antarctic and Arctic pack ice”, says Thomas.

Contact:

Professor David Thomas
Arctic Research Centre
Department of Bioscience
Aarhus University
Tlf: +45 29653117
Email: david.thomas@biology.au.dk.
Publication: GJC Underwood, S Aslam, C Michel, A Niemi, L Norman, KM Meiners, J Laybourn-Parry, H Paterson & DN Thomas. 2013. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of America, DOI 10.1073/pnas.1302870110

David Thomas | EurekAlert!
Further information:
http://www.au.dk

Further reports about: Academy Antarctic Predators Arctic Ocean Micro-gels ice floes ocean floor

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>