Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism discovered for communication between proteins that cause ‘cell suicide’

28.09.2010
A recent study undertaken by investigators at five research centres, amongst which is the CSIC-University of the Basque Country Biophysics Unit, provides new clues for the understanding of the ‘cell suicide’ process. The research was published in the latest issue of the prestigious Cell journal.

Our bodies daily eliminate in a controlled manner more than 100 million defective cells, by means of a procedure known as ‘cell suicide’ or apoptosis. This is a highly complicated process, any imbalances thus arising causing serious diseases, prominent amongst which is cancer.

Over the past two decades it has been possible to identify various cellular components involved in apoptosis. Nevertheless, there are still important unresolved questions about the functioning of certain key elements in this great cell riddle. This study has revealed that three essential components of the apoptotic process, the BAX and DRP-1 proteins and cardiolipin, act in a joint manner to produce a large hole in the external membrane of the mitochondria, proving to be lethal for the cell.

But probably the most surprising aspect of the research is that the researchers have managed to decipher a new ‘language’ used by BAX and DRP-1 for communicating: these two proteins do not interact with each other physically, as usually happens, but they do so through the lipids of the membrane. “More specifically, what one of the proteins (DRP-1) does is to deform the lipid bilayer of the membrane and the resulting structure is what apparently enables the activation of the second protein (BAX)”, explained Mr Gorka Basañez, from the CSIC-UPV/EHU Biophysics Unit, and one of the authors of the research. These findings can open new ways to the rational development of anti-tumour pharmaceutical drugs, specifically targeting these components of the apoptotic cell machinery.

Taking part in this research, led by Professor Jean-Claude Martinou of the Department of Cell Biology at the University of Geneva (Switzerland), were, apart from the CSIC-UPV/EHU Biophysics Unit, the universities of Salzburg (Germany), Hanover (Germany) and Florida (USA).

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biophysics CSIC-UPV/EHU DRP-1 Germany cell death pharmaceutical drug

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>