Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master of the tree – novel form of dendritic inhibition discovered

28.09.2018

A unique feature that sets neurons apart from all other cells are their beautiful, highly elaborate dendritic trees. These structures have evolved to receive the vast majority of information entering a neuron, which is integrated and processed by virtue of the dendrites’ geometry and active properties. Higher brain functions such as memory and attention all critically rely on dendritic computations, which are in turn controlled by inhibitory synaptic input. A team of scientists, led by Johannes J. Letzkus (MPI for Brain Research), now has identified a novel form of inhibition that dominantly controls dendritic function and strongly depends on previous experiences.

Our brain is a remarkably complex system. It is not only comprised of billions of neurons, but each individual neuron by itself even has exceptional processing power. Whether you are trying to find your way around a new city, recalling a past experience or straining to identify a quiet melody, chances are that you achieve these function with the help of distal dendrites on cortical pyramidal neurons, which have formidable computational and plasticity capacities in their own right.


The distal dendrites of pyramidal neurons (red) are controlled by a specialized set of interneurons (white) in layer 1 of neocortex.

Artwork by Julia Kuhl (http://somedonkey.com/)

To understand the forces that control these dendritic functions, researchers in the Letzkus lab went in search of a molecular marker for candidate inhibitory neurons. ‘Marker genes and the transgenic animals they enable have become vital tools in circuit neuroscience’ says Johannes Letzkus. ‘They serve as an address in our experiments, enabling us to target a specific neuron type with an array of different questions and methods’.

A collaboration with the group of Ivo Spiegel from the Weizmann Institute (Israel) led to the discovery of the first selective marker for inhibitory interneurons in layer 1 of neocortex. Dr. Letzkus remembers: ‘We were struck by the extraordinary selectivity of this marker. Even better, in separate work we found that the same gene is also highly selective for layer 1 interneurons in human neocortex, so it will likely also be useful for translating our insights from mice to our own brain’.

Fuelled by this discovery, the Letzkus lab discovered that these layer 1 interneurons contact many elements in the local circuit, and in particular provide strong inhibition to pyramidal neuron dendrites that are located right next to them. What is striking about this input compared to previous work on other interneurons is that it affects dendritic function at much longer timescales, due to the slower receptors that mediate the signal.

Dr. Letzkus: ‘Seeing these results made us realize that dendritic trees are controlled by (at least) two forms of inhibition with very different characteristics. What’s more, these two forces don’t merely coexist but in fact interact quite prominently. Thus, one form of dendritic inhibition is successively being replaced when the second one activates, illustrating that this control is very tightly regulated and dependent on what the animal currently needs to compute’.

Which signals recruit these two forms of inhibition? Using an approach pioneered by the Conzelmann lab at the Ludwig Maximilian University (Munich) enabled the researchers to determine the sources of input to layer 1 interneurons throughout the entire brain. Strikingly, these cells receive information from a much greater number of brain areas than deeper layer interneurons, and in particular from more areas that encode the particular relevance of a stimulus.

‘One major reason why we have evolved such sophisticated brains is that they allow us to determine which of the things going on around us at each moment might become important to us’ says Letzkus. ‘When we went on to systematically modify the relevance of a stimulus to the animals in our experiments, we found a striking correspondence with the activity of these interneurons. We have yet to fully understand how this makes the brain better at processing relevant information, but what these data clearly demonstrate is that layer 1 interneurons are critically involved in this process’.

‘Our hope is that the present findings have put these underappreciated interneurons on the map also for other labs. A great feature of the transgenic tools we generated is that they can easily be shared with fellow scientists around the world, enabling concerted progress on these fascinating cells that crown over neocortex’ concludes Dr. Letzkus.

Wissenschaftliche Ansprechpartner:

Dr. Johannes Letkus
Max Planck Institute for Brain Research
Max-von-Laue-Str. 4
60438 Frankfurt am Main
Germany
johannes.letzkus@brain.mpg.de

Originalpublikation:

Abs, E., Poorthuis, R.B., Apelblat, D., Conzelmann, K.-K., Spiegel, I., Letzkus, J.J. (2018). Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons. Neuron 100: 1-16.

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>