Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better marker for breast cancer may reduce need for second surgeries

20.09.2010
A new material could help surgeons more accurately locate breast cancers, reduce the need for second surgeries and minimize pre-surgical discomfort for patients. Microscopic gas-filled spheres of silica, a porous glass, can mark the location of early-stage tumors to show their position using ultrasound imaging in the operating room.

A team of chemists, radiologists and surgeons at the University of California, San Diego, created the new material, which they describe in a forthcoming issue of the journal MedChemComm.

The X-rays used to make mammograms reveal calcium deposits associated with breast cancer even in tumors too small to be felt. But surgeons can't use X-rays while operating. Instead, radiologists place guide wires into tumors hours or even the day before surgery. The wires don't mark depth well and can shift. Patients find them both uncomfortable and unsettling.

As an alternative, the researchers created spheres of silica and filled them with perfluoropentane, a gas that has been used before in short-lived contrast materials for medical imaging. The rigid silica shells help the new material last longer.

... more about:
»Cancer »UCSD »X-rays »breast cancer »lymph node

"These little gas-filled microbubbles stick to human breast tissue for days and can be seen with ultrasound," said William Trogler, professor chemistry. "If doctors placed them in early stage breast cancer, which is difficult to see during surgery, they could help surgeons remove all of it in the first operation."

In the past few years, radiologists have tried implanting radioactive "seeds" instead of wires to mark tumors, but the seeds last only a few hours and must be inserted with a large-bore needle, which is painful. In addition, only one abnormal region can be marked, but patients with a form of breast cancer called ductal in situ carcinoma often have several. The seeds also expose both patient and staff to radiation, can't been imaged in three dimensions and create radioactive medical waste.

At just two micrometers in diameter – half the width of a strand of spider silk – small silica microbubbles can be precisely injected into clusters of abnormal cells using a thin needle. Radiologists would be able to inject the durable material days before surgery. And ultrasound scans reveal the position of the bubble in three dimensions on the operating table.

"Instead of just using a Geiger-counterlike device to say you're getting closer to the radioactive seed, you could actually see where to carve," said Andrew Kummel, professor of chemistry. The increased precision should help surgeons avoid the need for second surgeries.

"By outlining the tumor more completely in multiple directions, the particles could potentially help surgeons remove non-palpable tumors in a single operation," said Sarah Blair, a surgeon at Moores UCSD Cancer Center. "They will definitely make the operation more comfortable for patients."

The researchers think the ultrasound pressure waves burst the microbubbles. "They're thin, fragile balls of porous glass, like Christmas tree ornaments," Kummel said. "The shell is just one two-hundredth of the diameter of the ball. When it breaks, the gas squirts out. Doppler ultrasound detects that movement."

Nano-scale silica microbubbles, which the team reports in this paper as well, are too small to remain in place, but might drain from a cancerous site to help identify which lymph nodes are most likely to contain stray cells that could help the cancer spread.

The current study demonstrates the feasibility of the technology in tissue samples. Tests in animal models are underway, and toxicology studies must also be completed before clinical trials in humans could begin.

Chemists Bill Trogler, and Andy Kummel, of UCSD's Division of Physical Sciences, and radiologist Robert Mattrey and surgeon Sarah Blair of the Moores UCSD Cancer Center led the project. Additional co-authors include radiologist Yuko Kono, and Sergio Sandoval, Moores UCSD Cancer Center; Paul Martinez of the Department of Chemistry and Biochemistry; and Jessica Wang-Rodriguez of the Department of Pathology.

The National Cancer Institute provided financial support for this study.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cancer UCSD X-rays breast cancer lymph node

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>