Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine biomedicine researchers decode structure of promising sea compound

31.08.2009
Novel natural product yielding potential new ways to fight diseases

Scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues at Creighton University have deciphered the highly unusual molecular structure of a naturally produced, ocean-based compound that is giving new understanding of the function of mammalian nerve cells.

The findings are reported in the Aug. 27 online version of the journal Chemistry & Biology by principal co-investigators William Gerwick, professor of oceanography and pharmaceutical sciences at the Center for Marine Biotechnology and Biomedicine (CMBB) at Scripps Institution of Oceanography and UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and Thomas Murray, professor and chair of pharmacology at the Creighton University School of Medicine in Omaha, Neb.

Scripps scientists collected cyanobacteria, tiny photosynthetic sea organisms, in Hoia Bay off Papua New Guinea in 2002 and recently discovered that the bacteria produce a compound with a structure previously unseen in biomedicine.

The compound, which the researchers have dubbed hoiamide A, offers a novel template for drug development.

"We have seen some of hoiamide A's features in other molecules, but separately," said Alban Pereira, a postdoctoral researcher in Scripps' CMBB and a paper coauthor. "We believe this new template may be important because it's showing different mechanisms of action—different ways to interact with neurons, possibly with a good therapeutic effect for such diseases as epilepsy, hypoxia-ischemia and several neurodegenerative disorders."

In pharmacological tests conducted at Creighton University, Hoiamide A was shown to interact with the same important therapeutic target as analgesic, antiarrhythmic, antiepileptic and neuroprotective drugs.

Dan Edwards and Luke Simmons, former members of Gerwick's laboratory, collected a mixture of cyanobacteria species Lyngbya majuscula and Phormidium gracile in May 2002 at five- to 10-meters (16 to 33 feet) depth from Hoia Bay. Extractions of this sample were shown to have intriguing neurochemical properties in assays run at Creighton University's School of Medicine. Gerwick and Murray's laboratories then collaborated to isolate the neuroactive substance and characterize its extraordinarily complex chemical structure.

"Classically, what we know about the workings of the human nervous system has come largely from studies of different toxins on the function of model systems, such as in this case, the action of hoiamide A on nerve cells in petri dish cultures," said Gerwick. "The toxins serve as 'molecular tools' for manipulating cells at an extremely microscopic scale. Ultimately, by understanding how neurons work at this detailed level, and having a set of tools such as hoiamide A, we can envision the development of new, more effective treatments for such diverse conditions as epilepsy, pain control and memory and cognition enhancement. The natural world still has many valuable molecules left for us to discover and hopefully develop into new classes of medicines."

In addition to Pereira, Gerwick and Murray, the paper was coauthored by Zhengyu Cao of Creighton University.

The study was supported by the National Institutes of Health.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>