Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light inside sponges - Sponges invented (and employed) the first fibre-optics

19.11.2008
Fibre optics as light conductors are obviously not just a recent invention. Sponges (Porifera), the phylogenetically oldest, multicellular organisms (Metazoa) are able to transduce light inside their bodies by employing amorphous, siliceous structures.

Already more than ten years ago, the finding of photosynthetically actice organisms inside sponges raised the question, how they could survive there in an otherwise presumably dark space.

Already at that time, the marine biologists Elda Gaino and Michele Sarà from Genova, Italy, hypothesized, that light might be transferred inside the sponge body.

Marine zoologists from the University of Stuttgart, and from the Leibnitz Institute for Marine Sciences at the University of Kiel, both within the research project BIOTECmarin, could now show, that the siliceous skeletal elements (spiculae) of the marine sponge Tethya aurantium in fact can transduce light, and do so in living sponges. Sponges without those spicules - like the aspicular sponge Aplysina aerophoba - are not able to transport light inside their tissue.

Herewith the scientists from Stuttgart and Kiel are the first to demonstrate light transduction inside living sponges. Until now light transduction could only be shown in explanted single spicules after laser illumination.

The authors Franz Brümmer, Martin Pfannkuchen, Alexander Baltz, Thomas Hauser and Vera Thiel published these exciting results in the Journal of Experimental Marine Biology and Ecology with the title: Light inside sponges.

Ursula Zitzler | alfa
Further information:
http://www.biotecmarin.de
http://www.uni-stuttgart.de/bio/zoologie
http://dx.doi.org/10.1016/j.jembe.2008.06.036

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>