Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light inside sponges - Sponges invented (and employed) the first fibre-optics

19.11.2008
Fibre optics as light conductors are obviously not just a recent invention. Sponges (Porifera), the phylogenetically oldest, multicellular organisms (Metazoa) are able to transduce light inside their bodies by employing amorphous, siliceous structures.

Already more than ten years ago, the finding of photosynthetically actice organisms inside sponges raised the question, how they could survive there in an otherwise presumably dark space.

Already at that time, the marine biologists Elda Gaino and Michele Sarà from Genova, Italy, hypothesized, that light might be transferred inside the sponge body.

Marine zoologists from the University of Stuttgart, and from the Leibnitz Institute for Marine Sciences at the University of Kiel, both within the research project BIOTECmarin, could now show, that the siliceous skeletal elements (spiculae) of the marine sponge Tethya aurantium in fact can transduce light, and do so in living sponges. Sponges without those spicules - like the aspicular sponge Aplysina aerophoba - are not able to transport light inside their tissue.

Herewith the scientists from Stuttgart and Kiel are the first to demonstrate light transduction inside living sponges. Until now light transduction could only be shown in explanted single spicules after laser illumination.

The authors Franz Brümmer, Martin Pfannkuchen, Alexander Baltz, Thomas Hauser and Vera Thiel published these exciting results in the Journal of Experimental Marine Biology and Ecology with the title: Light inside sponges.

Ursula Zitzler | alfa
Further information:
http://www.biotecmarin.de
http://www.uni-stuttgart.de/bio/zoologie
http://dx.doi.org/10.1016/j.jembe.2008.06.036

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>