Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining the dots on stem cell signaling

07.09.2009
Hierarchical networks of transcription factors maintain self-renewal of mouse embryonic stem cells

Transcription factors, the proteins that control the activity of genes, can be part of a hierarchy of signaling compounds, RIKEN molecular biologists have shown. They have also demonstrated such a hierarchy among the transcription factors and that they keep mouse embryonic stem cells from specializing or differentiating.

The study is important because the role of transcription factors in switching genes on and off is now recognized as a significant part of genetic function. For instance, researchers are now able to turn specialized cells back into a stem cell-like form—induced pluripotent stem cells—through applying transcription factors. Better understanding of how these factors themselves are activated should further this work.

Mouse embryonic stem cells in culture remain in an undifferentiated or pluripotent state if treated with the cytokine or extracellular hormone known as leukemia inhibitory factor (LIF). Inside the cell, such pluripotency is known to be directly associated with three transcription factors, Oct3/4, Sox2 and Nanog. In the past, other researchers have determined the involvement of the intermediate signaling compounds Jak and Stat3, and shown that pluripotency could be maintained without LIF by activating Nanog or Stat3 alone. How all these pieces fit together was unknown.

Hitoshi Niwa and colleagues from the RIKEN Center for Developmental Biology in Kobe set about tracing the signaling pathways, and detailed the results of their work in the journal Nature1.

By analyzing data on compounds associated with the key transcription factor Oct3/4, they tracked down two other transcription factors, Klf4 and Tbx3. Either of these genes when artificially stimulated is capable, like Nanog, of maintaining pluripotency without LIF (Fig. 1). The researchers then created transgenic cells in which each of Klf4, Tbx3 and Nanog was activated, so they could study the impact of these transcription factors on levels of other key compounds.

Their work revealed parallel signaling pathways stimulated by LIF of a hierarchical nature. The pathway involving Jak and Stat3 turns out to activate Klf4 and through it Sox2 and Oct3/4. Tbx3 is part of another pathway which stimulates Nanog and Oct3/4. Other signaling compounds are known to connect into this latter pathway. They also found that transcription of all these factors is regulated by the core of Oct3/4, Sox2 and Nanog. The complexity of the network confers stability, the researchers say.

“Based on this picture, we will try to establish a precise quantitative model of the transcription factor network that will be applicable for computational simulation,” Niwa says.

The corresponding author for this highlight is based at the RIKEN Laboratory for Pluripotent Cell Studies

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/5956
http://www.researchsea.com

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>