Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s complicated - new insights into the evolutionary history of bears

11.06.2014

According to researchers of the LOEWE Biodiversity and Climate Research Centre (BiK-F), Goethe University Frankfurt and the U.S. Wildlife Service several bear species that today only occur in America or in Asia have hybridized in their evolutionary history. The Beringia land bridge, which in former times connected the habitats of these species, might have enabled their encounter. The large-scale study is based on the comparison and analysis of genetic material of all bear species that still exist. The results have been published recently in the journal Evolution and Molecular Biology.


American black bear. Copyright: Tobias Bidon

If in documentaries or in the zoo - everyone has seen and knows about brown bears, polar bears and pandas. However, there are several other bear species in Asia and South America that are less well-known, such as the sloth bear, the Asiatic or the spectacled bear. There are eight bear species that still exist worldwide. Despite many years of research, the exact relationships between them remain unresolved.

Who with whom? Polar bear and brown have hybridized
Previous analyses of genetic material of polar bears and brown bears have proven already that the two species have hybridized during their long evolutionary history. This behavior can still be observed today and the ongoing climate change drives the bear even closer. It is therefore likely that there have been similar exchanges of genetic material between other species of the bear family.

... as well as brown bears and black bears
To shed light on this, a team of the German Biodiversity and Climate Research Centre (BiK-F) and the Goethe University Frankfurt in cooperation with colleagues from the US have now analyzed certain genome parts of all bear species alive today. "We were able to show that several bear species have hybridized during their evolutionary history. The exchange can still be traced in the genetic makeup of today's bears," says the lead author of the study, Verena Kutschera (BiK-F). This mix-up makes it difficult to classify some gene fragments as belonging to a particular species.

Beringia land bridge serving as an intercontinental meeting point
Surprisingly, several bear species which nowadays live on different continents have also taken part in the mating and thus gene exchange. This may have been possible because the significantly lower sea level during past ice ages resulted in a land bridge between Asia and North America, the Beringia land bridge. Thus the ancestors of today’s bear species, e.g. of the Asiatic black bear and the American black bear, had the opportunity to meet and to mate.

Darwin’s species tree is insufficient to map complicated relationships
All eight bear species that occur today have well adapted to their present habi-tat and differ physically very much. A prime example for this is polar bears and black bears. Nevertheless, the speciation of some individual genes has not finished yet which additionally complicates the research of the evolution of bears.

With new molecular methods more gene parts might be discovered in the genomes of mammal species that could originate from other species. Apparently separate genetic lineages turn out to have merged – sometimes repeatedly – during the evolutionary history and exchanged genetic material with each other. "The traditional pedigree already used by Darwin is not always suitable to map evolutionary history in full detail. So-called phylogenetic networks a more useful to depict the genetic mix-up that we have found ", comments evolutionary biologist Prof. Dr. Axel Janke, BiK-F, leader of the research team. The study demonstrates that evolution often is not a linear process; thanks to modern molecular methods it’s complex processes are finally revealed.

Publication:
Kutschera, V. et al. Bears in a forest of gene trees: Phylogenetic inference is complicated by incomplete lineage sorting and gene flow – Molecular Biology and Evolution, DOI: 10.1093/molbev/msu186


For further information please contact:

Prof. Dr. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1842
axel.janke@senckenberg.de

or
Verena Kutschera
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1828
verena.kutschera@senckenberg.de

or
Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

 
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action. For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

Further reports about: Beringia BiK-F Biodiversity Biodiversität Biology Climate Evolution Molecular Senckenberg history relationships

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>