Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal lymphatic tissue important for the absorption and spread of the scrapie prion

12.01.2009
Scrapie is a transmissible, degenerative and ultimately fatal disease of the nervous system of sheep. The cause of the disease is a prion protein, and absorption from the intestine is assumed to be the natural route of infection.

Lymphatic tissue associated with the intestine is important for the early accumulation of prion protein and its subsequent spread to the central nervous system.

Transmissible prion diseases occur in both animals and man, two well-known ones being mad cow disease of cattle and Creutzfeldt Jacobs disease of man. These diseases produce symptoms in the central nervous system, with classical scrapie being characterised by intense itching with subsequent loss of wool, smacking of the lips, abnormal gait, and eventually collapse.

Protein molecules may show different properties when their structures become altered, for example, proteins in egg white are hardened by heat treatment. The assumed cause of prion diseases is that the structure of the normal prion protein (called PrPC) becomes altered. The abnormal, disease-associated form of the prion protein (called PrPSc) is assumed to be the infectious agent.

Infection most likely occurs across the intestine, and one first sees an accumulation of PrPSc in the lymphatic tissue associated with the intestine, especially in areas of the small intestine called Peyer's patches. The infection then spreads to the central nervous system and the brain, where, in the final stages of the disease, one sees an accumulation of PrPSc and also structural changes such as sponge-like "holes" in the brain mass.

We understand as yet very little of just how the infectious PrP is absorbed from the intestine. It is assumed that infection requires the presence of the normal form of the protein PrP, and it is known that the gene for PrP is active in a series of different types of cells and tissues.

For his doctorate, Lars Austbø investigated the activity of the gene for prion protein (PrP mRNA) by looking at where in the intestinal tissue it is formed and in what quantity. He also identified other genes of possible significance for the early phase of scrapie.

Austbø used advanced gene technology and molecular biology to study both prion gene activity (PrP mRNA) and the presence of the protein PrPC in the Payer's patches of the small intestine and in the spleen - two organs where lymphoreticular tissue is assumed to be important for the absorption of the infective substance (PrPSc) and its spread to the brain.

Austbø and his colleagues have compiled new knowledge of the tissues that the PrPC protein and its mRNA is expressed in and the degree to which the gene is active. In addition, the study has shown that accumulation of the disease-related prion protein (PrPSc) is not necessarily associated with high levels of the normal prion protein. This conflicts with earlier assumptions and may force a re-evaluation of earlier theories on the absorption and distribution of the disease-related prion protein.

In addition, Lars Austbø worked with the identification of other genes that may play a role in the development of scrapie. Many genes contribute to, or are affected by, any disease progression. By mapping such genes, one can gain a better impression of the processes that are initiated and thereby a better understanding of disease development.

Cand. scient. Lars Austbø defended his Ph. D. thesis, entitled "Studies on gene expression during the lymphoreticular phase of scrapie in sheep", on June 26, 2008. The work for the thesis was done at the Department of Basal Sciences and Aquatic Medicine, the Norwegian School of Veterinary Science.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/Intestinal-lymphatic-tissue-important-for-the-absorption-and-spread-of-the-scrapie-prion/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>