Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights gained from growing cold-causing virus on sinus tissue

11.04.2011
Using sinus tissue removed during surgery at University of Wisconsin Hospital and Clinics, researchers at the University of Wisconsin-Madison have managed to grow a recently discovered species of human rhinovirus (HRV), the most frequent cause of the common cold, in culture.

The researchers found that the virus, which is associated with up to half of all HRV infections in children, has reproductive properties that differ from those of other members of the HRV family.

The accomplishments, reported in Nature Medicine on April 11, should allow antiviral compounds to be screened to see if they stop the virus from growing.

The report sheds light on HRV-C, a new member of the HRV family that also includes the well-known HRV-A and HRV-B. Discovered five years ago, HRV-C has been notoriously difficult to grow in standard cell cultures and, therefore, impossible to study.

"We now have evidence that there may be new approaches to treating or preventing HRV-C infections," says senior author James Gern, professor of medicine at the UW-Madison School of Medicine and Public Health and an asthma expert at American Family Children's Hospital.

Future drugs could be especially useful for children and adults who have asthma and other lung problems, Gern says.

Recent studies have shown that in addition to its major role in the common cold, HRV-C is responsible for between 50 percent and 80 percent of asthma attacks. HRV-C is a frequent cause of wheezing illnesses in infants and may be especially likely to cause asthma attacks in children. HRV infections of all kinds also can greatly worsen chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease.

Like other scientists, Yury Bochkov, a virologist in Gern's lab, was unable to grow HRV-C in standard cell lines. So he turned to nasal tissue he collected following sinus surgery—and was surprised to find success. He grew significant amounts of two forms of HRV-C, then sequenced the complete virus genome and engineered an identical copy of it in a plasmid vector.

Studying the reproduction of the living, growing virus, he found that HRV-C replication appeared to occur in specific kinds of cells localized in nasal epithelium tissue.

"We also found that HRV-C does not attach to the two receptors that HRV-A and HRV-B use," Bochkov says. "HRV-C uses a distinct, yet unknown, receptor that is absent or under-expressed in many cell lines."

HRV-C also responded differently to antibodies that block receptor binding.

"Antibodies that normally keep HRV-A and HRV-B from binding to their receptors did not prevent HRV-C from binding to them," Bochkov says.

The findings suggest that new approaches are needed to treat HRV-C, says Gern.

"Previous drug candidates for the common cold were tested only against HRV-A and HRV-B," he says. "For more effective medications, we need to also target HRV-C."

Bochkov will continue to use the organ culture system to study details of HRV-C biology.

"It's now clear that these viruses have unique growth requirements," he says.

Collaborators on the study included Ann Palmenberg, Wai-Ming Lee, Svetlana Amineva, Xin Sun, Thomas Pasic and Nizar Jarjour from UW-Madison; and Jennifer Rathe and Stephen Liggett from University of Maryland.

Toni Morrissey | EurekAlert!
Further information:
http://www.uwhealth.org

Further reports about: HRV HRV-A HRV-B HRV-C Management Insights feature asthma attack

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>