Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New induced stem cells may unmask cancer at earliest stage

04.02.2011
By coaxing healthy and diseased human bone marrow to become embryonic-like stem cells, a team of Wisconsin scientists has laid the groundwork for observing the onset of the blood cancer leukemia in the laboratory dish.

"This is the first successful reprogramming of blood cells obtained from a patient with leukemia," says University of Wisconsin-Madison stem cell researcher Igor Slukvin, who directed a study aimed at generating all-purpose stem cells from bone marrow and umbilical cord blood. "We were able to turn the diseased cells back into pluripotent stem cells. This is important because it provides a new model for the study of cancer cells."

The research was reported today (Feb. 4) in the journal Blood by Slukvin and colleagues from the WiCell Research Institute and the Morgridge Institute for Research, private research centers in Madison.

Slukvin's group, using banked healthy and diseased bone marrow and cord blood, employed a technique developed in 2009 by Wisconsin stem cell pioneer James Thomson that sidesteps the problems posed by the genes and viral vectors used to induce mature cells to regress to a stem cell state.

According to the new study, which was funded by the National Institutes of Health and The Charlotte Geyer Foundation, reprogramming blood cells to become induced stem cells is many times more efficient than the reprogramming of skin cells, which were the first mature cells to be guided back to an embryonic stem cell-like state.

The new work could open to science vast repositories of banked tissue, both healthy and diseased, such as bone marrow, the soft tissue in bones that helps make blood, and umbilical cord blood. The work could underpin insightful models capable of unmasking the cellular events that go awry and cause cancers such as leukemia, and could aid the development of new stem cell-based therapies, according to Slukvin.

Of particular note in the new study, says Slukvin, is the reprogramming of marrow cells from a patient with chronic myeloid leukemia, a cancer of the blood that kills about 1,500 people a year in the United States. The disease, like all leukemias, starts in the cells that produce white blood cells in bone marrow.

According to Slukvin, the induced stem cells generated from the diseased tissue retain the exact same complex of genetic abnormalities found in the mature cancer cells. That means that when the induced cells are turned back into blood, scientists could, in theory, watch cancer develop from scratch as cells bearing cancer mutations become cancer stem cells.

"When we differentiate induced stem cells back to blood, we can identify the stages when the abnormality that leads to cancer manifests itself," Slukvin explains.

The ability to pinpoint the very earliest stages of cancer is a major focus of biomedical science.

"This is very important for developing new leukemia drugs," says Slukvin. "A major focus of leukemia research is to find ways to try and eliminate the most immature leukemia cells - cancer stem cells."

The work by Slukvin and his team may represent the first step in a new understanding of the cascade of events that results in blood diseases such as leukemia.

Employing the reprogramming technique developed by Thomson and his colleagues, Slukvin emphasizes, is important because it eliminates the exotic reprogramming genes, some of which are cancer-related genes, from the induced stem cell equation. In the case of chronic myeloid leukemia and other blood diseases, obtaining stem cells that do not have the genetic reprogramming factors is very important.

"When you use viruses (to ferry genes into a cell) you have chromosomal integration," the Wisconsin researcher notes. "Some of the reprogramming factors are oncogenes and would interfere with a study of chronic myeloid leukemia" whose abnormalities are also encoded on the chromosome.

In addition to Slukvin, an investigator at the Wisconsin National Primate Research Center (WNPRC) and an associate professor of pathology at the UW-Madison School of Medicine and Public Health, authors of the new study include Kejin Hu, Junying Yu and Kyung-Dal Choi of the WNPRC; Kran Suknuntha of the UW-Madison School of Medicine and Public Health; Shulan Tian, Ron Stewart and James A. Thomson of the Morgridge Institute for Research; and Karen Montgomery of the WiCell Research Institute.

Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Igor Slukvin | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>