Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved Mussel Adhesive

13.04.2012
Biocompatible, waterproof, self-healing, and reversible: A new adhesive for medical applications?
ussels are true masters of adhesion. They bond solidly under water to nearly any type of surface. Researchers from Mainz have been inspired by mussel adhesive proteins to add another exciting property. As they report in the journal Angewandte Chemie, their new adhesive can be debonded on demand.

Glue was previously considered to be a cheap and flimsy solution. However, modern adhesives are very high-tech, for example, they can hold together the aerofoils of airplanes. However, three items persist on the wish lists of adhesion scientists: reliable bonding under water, for fixing leaks in underwater pipelines or sealing bleeding wounds during operations; “self-healing” adhesives that would prevent catastrophic failure; and adhesives that can be debonded “on demand” with no residue, for easy replacement of components or dismantling composites for recycling.

In nature there are astonishingly robust, strongly bonding, universal adhesives that meet the first two requirements: mussels use them to stick to nearly all types of surfaces, from rocks to wooden posts to the metal hulls of ships. The amino acid dihydroxyphenylalanine (DOPA) is critical to this amazing adhesive effect. The DOPA groups contained in the adhesive react stepwise under the conditions prevalent in seawater to form a cross-linked polymer matrix capable of bonding to inorganic oxides in rock. They also bind to polyvalent metal ions, such as iron ions, in seawater, which give the mussel adhesive self-healing properties.

Researchers working with Aránzazu del Campo at the Max Planck Institute for Polymer Research in Mainz have taken inspiration from these mussel adhesives. They produced four-armed, star-shaped polymers with nitrodopamine groups attached to their ends. These groups are related to DOPA and help the adhesive to cross-link under water and give it self-healing properties. It only takes a few minutes for a cut gel sample of this material to grow back together. The nitro groups (-NO2) also provide this mussel-adhesive-inspired material with another bonus: the molecules can be split by irradiation with UV light, so the adhesive can be debonded.

The Mainz team has thus laid the foundation for a class of adhesives that are waterproof, heal themselves, react with surfaces, degrade with light, and are biocompatible. Surfaces coated with this adhesive also provide an excellent substrate for cell cultures. The primary application for this new material may thus be in medicine, possibly as removable hydrogel pads for skin regeneration or as a reversible superglue for repeated operations.

About the Author
Dr Aránzazu del Campo is a Minerva Group Leader at the Max Planck Institute for Polymer Research. Her main specialty is bioinspired surfaces with tunable properties.
Author: Aránzazu del Campo, Max-Planck-Institut für Polymerforschung, Mainz (Germany), http://www.mpip-mainz.mpg.de/groups/campo/Contact
Title: Bioinspired Underwater Bonding and Debonding on Demand
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201108629

Aránzazu del Campo | Angewandte Chemie
Further information:
http://www.mpip-mainz.mpg.de/groups/campo/Contact

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>