Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cell discovery could help to halt cancer spread

14.08.2014

Melbourne researchers have revealed the critical importance of highly specialised immune cells, called natural killer cells, in killing melanoma cells that have spread to the lungs.

These natural killer cells could be harnessed to hunt down and kill cancers that have spread in the body.


Melbourne researchers have revealed the critical importance of highly specialized immune cells, called natural killer cells, in killing melanoma cells that have spread to the lungs. These natural killer cells could be harnessed to hunt down and kill cancers that have spread in the body. Dr. Nick Huntington (left), Rebecca Delconte (center) and Dr. Priyanka Sathe led the team from the Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.

Credit: Walter and Eliza Hall Institute of Medical Research

The team, from the Walter and Eliza Hall Institute, also found natural killer cells were critical to the body's rejection of donor bone marrow transplants and in the runaway immune response during toxic shock syndrome.

The discoveries came after the team showed that a protein called MCL-1 was crucial for survival of natural killer cells, in research published today in the journal Nature Communications. The discovery will help to determine how natural killer cells can be manipulated to fight cancers and other disorders.

Dr Nick Huntington, Dr Priyanka Sathe and Ms Rebecca Delconte from the Walter and Eliza Hall Institute said MCL-1 could be a target for boosting or depleting natural killer cell populations to treat disease. Natural killer cells are immune predators, scouring the body in search of foreign invaders such as viruses, and sensing changes in our own cells that are associated with cancer.

Dr Huntington said the team showed natural killer cells were needed to fight off invading tumour cells that had spread past the original cancer site.

"We discovered MCL-1 is absolutely essential for keeping natural killer cells alive," Dr Huntington said. "Without natural killer cells, the body was unable to destroy melanoma metastases that had spread throughout the body, and the cancers overwhelmed the lungs".

"Knowing how important natural killer cells are for detecting and destroying cancer cells as they spread suggests they would be a good target for boosting immune defenses to treat cancer."

Natural killer cells are present in high frequency in our blood and patrol the body's 'frontlines' – the lungs, intestines, mucous membranes and skin – to detect and destroy diseased cells. However these predatory natural killer cells are a double-edged sword.

Dr Huntington said the team showed natural killer cells also played a role in death from toxic shock (sepsis), and in rejecting bone marrow transplants.

"Natural killer cells led the response that caused rejection of donor stem cells in bone marrow transplantations," Dr Huntington said. "They also produced inflammatory signals that can result in toxic shock syndrome, a potentially fatal illness caused by bacterial toxins that causes a whole-body inflammatory reaction."

Dr Huntington said the discovery provided a solid lead to look for ways of boosting natural killer cells when they are needed in higher supply, or depleting them when they are causing illness.

"We showed MCL-1 levels inside the cell increase in response to a blood cell signalling protein called interleukin 15 (IL-15). We previously knew IL-15 boosted production and survival of natural killer cells, and we have shown that IL-15 does this by initiating a cascade of signals that tell the natural killer cell to produce MCL-1 to keep it alive."

"Now that we know the critical importance of MCL-1 in the survival of natural killer cells, we are investigating how we might manipulate this protein, or other proteins in the pathway, to treat disease," Dr Huntington said.

###

The research was supported by the Australian National Health and Medical Research Council, The Menzies Foundation and the Victorian Government.

Liz Williams | Eurek Alert!
Further information:
http://www.wehi.edu.au

Further reports about: blood donor illness immune inflammatory lungs shock signals toxic transplants

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>