Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen Fuel Tech Gets Boost from Low-Cost, Efficient Catalyst

03.05.2011
Scientists have engineered a cheap, abundant alternative to the expensive platinum catalyst and coupled it with a light-absorbing electrode to make hydrogen fuel from sunlight and water.

The discovery is an important development in the worldwide effort to mimic the way plants make fuel from sunlight, a key step in creating a green energy economy. It was reported last week in Nature Materials by theorist Jens Nørskov of the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University and a team of colleagues led by Ib Chorkendorff and Søren Dahl at the Technical University of Denmark (DTU).

Hydrogen is an energy dense and clean fuel, which upon combustion releases only water. Today, most hydrogen is produced from natural gas which results in large CO2-emissions. An alternative, clean method is to make hydrogen fuel from sunlight and water. The process is called photo-electrochemical, or PEC, water splitting. When sun hits the PEC cell, the solar energy is absorbed and used for splitting water molecules into its components, hydrogen and oxygen.

Progress has so far been limited in part by a lack of cheap catalysts that can speed up the generation of hydrogen and oxygen. A vital part of the American-Danish effort was combining theory and advanced computation with synthesis and testing to accelerate the process of identifying new catalysts. This is a new development in a field that has historically relied on trial and error. "If we can find new ways of rationally designing catalysts, we can speed up the development of new catalytic materials enormously," Nørskov said.

The team first tackled the hydrogen half of the problem. The DTU researchers created a device to harvest the energy from part of the solar spectrum and used it to power the conversion of single hydrogen ions into hydrogen gas. However, the process requires a catalyst to facilitate the reaction. Platinum is already known as an efficient catalyst, but platinum is too rare and too expensive for widespread use. So the collaborators turned to nature for inspiration.

They investigated hydrogen producing enzymes—natural catalysts—from certain organisms, using a theoretical approach Nørskov’s group has been developing to describe catalyst behavior. "We did the calculations," Nørskov explained, "and found out why these enzymes work as well as they do." These studies led them to related compounds, which eventually took them to molybdenum sulfide. "Molybdenum is an inexpensive solution" for catalyzing hydrogen production, Chorkendorff said.

The team also optimized parts of the device, introducing a "chemical solar cell" designed to capture as much solar energy as possible. The experimental researchers at DTU designed light absorbers that consist of silicon arranged in closely packed pillars, and dotted the pillars with tiny clusters of the molybdenum sulfide. When they exposed the pillars to light, hydrogen gas bubbled up—as quickly as if they'd used costly platinum.

The hydrogen gas-generating device is only half of a full photo-electrochemical cell. The other half of the PEC would generate oxygen gas from the water; though hydrogen gas is the goal, without the simultaneous generation of oxygen, the whole PEC cell shuts down. Many groups—including Chorkendorff, Dahl and Nørskov and their colleagues—are working on finding catalysts and sunlight absorbers to do this well. “This is the most difficult half of the problem, and we are attacking this in the same way as we attacked the hydrogen side,” Dahl said.

Nørskov looks forward to solving that problem as well. "A sustainable energy choice that no one can afford is not sustainable at all," he said. "I hope this approach will enable us to choose a truly sustainable fuel."

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

SUNCAT is a DOE Office of Science-sponsored research center at SLAC in partnership with the Department of Chemical Engineering, Stanford University, to explore catalytic processes for energy conversion and efficiency.

The Technical University of Denmark, DTU is a technical university in northern Europe. The research focus is on technical and natural sciences such as catalysis, photonics, wind energy, biotechnology and telecommunication.

The Center for Individual Nanoparticle Functionality, CINF, is funded by the Danish National Research foundation and is focusing on nanoparticle functionality in conjunction with energy harvesting, conversion and production.

Catalysis for Sustainable Energy, CASE, is a cross disciplinary initiative funded by the Danish Ministry of Science. The goal is to develop rules of catalyst design and use these rules to design cheap, efficient and stable catalysts for converting solar energy into fuels.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>