Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do Phytoplankton Survive a Scarcity of a Critical Nutrient?

06.06.2014

New study up-ends conventional wisdom

Phytoplankton—tiny, photosynthetic organisms—are essential to life on Earth, supplying us with roughly half the oxygen we breathe.  Like all other life forms, phytoplankton require the element phosphorus to carry out critical cellular activity, but in some parts of the world’s ocean, P is in limited supply. How do phytoplankton survive when phosphorus is difficult to find?


To conduct their work, the scientists collected water samples at different depths of the ocean during two cruises from the relatively nutrient-rich waters off Woods Hole to the phosphorus-starved subtropical Sargasso Sea near Bermuda in 2008 and 2012. Pictured here are corresponding author WHOI Associate Scientist Benjamin Van Mooy (orange helmet) and research assistant Justin Ossolinski (blue helmet) working with crew members of the R/V Knorr to deploy a sediment net-trap used in the study. (Photo by Suni Shah, Woods Hole Oceanographic Institution)


The study's lead author Patrick Martin (second from right) and WHOI marine chemist Ben Van Mooy (left) with their colleagues working around a water sampling rosette. (Photo courtesy of Ben Van Mooy, Woods Hole Oceanographic Institution)

Phytoplankton can alter their biochemical make-up according to the availability of nutrients in the water. When phosphorus (P) is particularly abundant in the water, phytoplankton produce and store a form of P called polyphosphate, or poly-P, to use later during times when P is less abundant.

The accepted wisdom has been that poly-P was would be found stored by micro-organisms in waters where P was abundant and would be scarce in waters depleted of P. But when a group of researchers from the Woods Hole Oceanographic Institution (WHOI) and the Bigelow Laboratory for Ocean Sciences tested that notion, conducting the most comprehensive survey of poly-P content and distribution in the western North Atlantic, what they found was surprising.

Rather than finding low levels of poly-P in the phytoplankton in the Sargasso Sea where P is scarce, they found the phytoplankton were enriched with poly-P when compared to those in the nutrient rich waters in the western North Atlantic – the opposite of what they had expected. They also found that in low-P environments, poly-P was more readily recycled from sinking particles, retaining it in shallower waters where phytoplankton live and making it available for their use.   

“We’ve know that Poly-P existed in phytoplankton for a very long time.  The conventional wisdom that phytoplankton made more Poly-P when they had more phosphorus just made so much intuitive sense that few people have worked on this molecule,” said WHOI marine chemist Ben Van Moy, the corresponding author on the study.  “However, there were a few hints in the literature that the whole story on poly-P was not completely wrapped up.  We certainly didn’t set out thinking that we might upend current thinking, and it took us a long time before we would believe our own results.  I think the larger message from fundamental discoveries like this is that we have so much more to learn about phosphorous and how phytoplankton deal with its scarcity in certain regions of the sea.  Hopefully this paper will be a launching point for a lot of exciting science.”

The study, "Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus," was recently published in the Proceedings of the National Academy of Sciences (PNAS).

The work was supported by a Doherty Postdoctoral Scholarship and the National Science Foundation.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. For more information, please visit www.whoi.edu.

Originally published: June 5, 2014

WHOI Media Office | Eurek Alert!

Further reports about: Earth Laboratory Oceanographic Phytoplankton WHOI activity biochemical environment

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>