Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping neurons stay on track

29.08.2011
Guidance signals prevent neurons from making bad connections by triggering a mechanism that causes growing axons to shrivel and retract

The complex inner wiring of the brain is coordinated in part by chemical guidance factors that help direct the interactions between individual neurons. As growing cells extend their axons outward, these tendrils are simultaneously drawn in the correct direction by attractive signals and steered away from ‘wrong turns’ by repulsive signals.

New work from a team led by Hiroyuki Kabayama and Katsuhiko Mikoshiba of the RIKEN Brain Science Institute in Wako has revealed insights into how one of these repulsive guidance cues, semaphorin 3A (Sema3A), gives axons their marching orders. In an earlier study, the researchers found evidence that Sema3A causes large-scale internalization of the cellular membrane at the growth cone, the tip of the growing axon, and determined that this internalization occurs via a process known as macropinocytosis. “These findings suggested an important role for massive, macropinocytosis-mediated membrane retrieval during Sema3A-induced growth cone collapse,” says Kabayama.

The neurotoxin C1, a protease enzyme, induces similar effects on growth cones, and Kabayama and Mikoshiba and their colleagues were able to uncover Sema3A’s mode of action via experiments using this enzyme. Based on a series of experiments with cultured neurons isolated from chick embryos, the researchers determined that the enzyme works by breaking down syntaxin 1B (Syx1B), a protein with a prominent role in membrane trafficking, thereby releasing an inhibitory mechanism that otherwise keeps macropinocytosis in check.

Accordingly, direct inhibition of Syx1B expression in neurons led to reduced axonal growth and increased growth cone collapse. On the other hand, treatment with the macropinocytosis-inhibiting compound EIPA countered the growth cone-collapsing effects of either neurotoxin C1 or inhibition of Syx1B. The researchers also found that this drug alone was sufficient to undermine Sema3A’s axon-repulsive effects

Kabayama, Mikoshiba and colleagues obtained additional confirmation of the central role of Syx1B in experiments that revealed that the treatment of neurons with Sema3A triggers rapid degradation of this protein as a prelude to the initiation of macropinocytosis. This effect could be countered by forcing these cells to overexpress Syx1B. Kabayama also notes that another repulsive signal, ephrin A2, appears to act via the same cellular mechanism. “It is likely that repulsive axon guidance is generally mediated by syntaxin 1B-regulated macropinocytosis,” he says.

In future studies, Kabayama and Mikoshiba intend to test this hypothesis by manipulating this pathway in transgenic animals. “We are going to generate Syx1B-overexpressing mice and investigate whether inhibition of macropinocytosis by Syx1B can prevent ephrin A2- or Sema3A-dependent growth cone collapse,” says Mikoshiba.

The corresponding author for this highlight is based at the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute

References
Kabayama, H., Takeuchi, M., Taniguchi, M., Tokushige, N., Kozaki, S., Mizutani, A., Nakamura, T. & Mikoshiba, K. Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse. The Journal of Neuroscience 31, 7357–7364 (2011).

Kabayama, H., Nakamura, T., Takeuchi, M., Iwasaki, H., Taniguchi, M., Tokushige, N. & Mikoshiba, K. Ca2+ induces macropinocytosis via F-actin depolymerization during growth cone collapse. Molecular and Cellular Neuroscience 40, 27–38 (2009).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>