Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hedges and edges help pigeons learn their way around

22.01.2014
A study has found that homing pigeons' ability to remember routes depends on the complexity of the landscape below, with hedges and boundaries between urban and rural areas providing ideal landmarks for navigation

A study has found that homing pigeons' ability to remember routes depends on the complexity of the landscape below, with hedges and boundaries between urban and rural areas providing ideal landmarks for navigation.


These are homing pigeons in flight, equipped with GPS trackers. The study found that homing pigeons' ability to remember routes depends on the complexity of the landscape below

Credit: Zsuzsa Ákos

Researchers from Oxford University, the Zoological Society of London and Uppsala University, Sweden released 31 pigeons from four sites around Oxford for an average of 20 flights each. The study, published in Biology Letters this week, found that pigeons were better able to memorise flight paths when the landscape below was of a certain visual complexity, such as rural areas with hedges or copses.

'We discovered that pigeons' ability to memorise routes is highly influenced by the visual properties of the landscape in a 250 metre radius below them,' said lead author Dr Richard Mann of Uppsala University Sweden, formerly of Oxford University where he conducted the study. 'Looking at how quickly they memorise different routes, we see that that visual landmarks play a key role. Pigeons have a harder time remembering routes when the landscape is too bland like a field or too busy like a forest or dense urban area. The sweet spot is somewhere in between; relatively open areas with hedges, trees or buildings dotted about. Boundaries between rural and urban areas are also good.'

Understanding how pigeons learn to find their way is important because they are able to navigate exceptionally well despite having small brains. Whatever method they use to remember routes must therefore make highly efficient use of their limited mental processing power.

'There may be certain rules that free-flying birds use to structure information that enable them to map the environment using their limited brain power,' said co-author Tim Guilford, Professor of Animal Behaviour at Oxford University's Department of Zoology. 'Fundamentally understanding how they do this will tell us more about their abilities and limitations, and could reveal methods that robots with limited processing power might use to navigate.'

Knowing the landscape features that pigeons use to navigate could also help researchers to predict the flight patterns of any birds that are diurnal; active during the day. Identifying the likely flight paths of birds could be of use to conservationists, birdwatchers and town planners.

'Homing pigeons provide a reliable model for studying navigation and there's no reason to believe that other diurnal birds won't use similar methods,' said Professor Guilford. 'We mainly use pigeons for studies like this because we can be confident that they will bring back the GPS devices with the data. With wild birds, there is a real risk that we won't get the equipment and data back, but fundamentally we expect them to use similar navigational methods.'

The study was funded by the Engineering and Physical Sciences Research Council, European Research Council, the Royal Society and the Biotechnology and Biological Sciences Research Council.

Oxford University News | EurekAlert!
Further information:
http://www.ox.ac.uk

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>