Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haplobank – a biobank of reversible mutant embryonic stem cells

28.09.2017

The Penninger lab at the IMBA developed a biobank of revertible, mutant embryonic stem cells, published in the current issue of Nature. This cell bank – called Haplobank - contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome.

Genetic screens have revolutionized our understanding of biological processes and disease mechanisms. Recent technical advances have broadened the available approaches for disrupting gene function in a cell population prior to screening, from chemical and insertional mutagenesis to RNA interference, and, most recently, CRISPR-mediated genome editing.


Haplobank contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome.

(c)Izabella Kaminski


The two first authors Ulrich Elling and Reiner Wimmer.

(c)IMBA

However, RNA interference and CRISPR-mediated gene targeting often suffer from poor efficiency and off-target effects. In addition, most mutagenesis approaches are not reversible – making it difficult to rigorously control for the frequent genetic and epigenetic differences between ostensibly identical cells. These issues can confound the reproducibility, interpretation and overall success of genetic screens.

Major concerns about scientific reproducibility and rigor have emerged in recent years. Amgen and Bayer, as well as The Reproducibility Initiative, have been unable to replicate many high-profile cancer studies. Indeed, it is not uncommon to obtain different results from experiments with the same cell line in two different laboratories. These inconsistencies can arise for various reasons. Regardless, irreproducible results waste money, damage the credibility of science and scientists, and delay or undo progress, including the development of effective therapies.

To overcome these problems, the Penninger lab at the IMBA developed a biobank of revertible, mutant embryonic stem cells, published in the current issue of Nature. This cell bank – called Haplobank - contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome (almost 17,000 genes). “Haplobank is available to all scientists, and represents the largest ever library of hemizyogous mutant embryonic stem cell lines to date. The resource overcomes issues arising from clonal variability, because mutations can be repaired in single cells and at whole genome scale,” explains Ulrich Elling, first and corresponding author of the current publication in Nature.

Host-pathogen interactions and drug discovery

As a proof-of-principle, the authors performed a genetic screen to uncover factors required for infection with rhinovirus – the cause of the common cold. They discovered that rhinovirus requires a previously unknown host cell factor, phospholipase A2G16 (PLA2G16), to kill cells. Further, they showed that a specific domain of PLA2G16 is required for infection and may be an attractive drug target. Interestingly, PLA2G16 was also shown recently to be necessary for successful infection by related viruses, including poliovirus.

Novel genes for blood vessel development

In another proof-of-principle screen, the authors leveraged the pluripotent potential of embryonic stem cells by differentiating them into blood vessel organoids. The formation of blood vessels (angiogenesis) is critical for development and for tissue maintenance, as well as for diseases like cancer. The authors screened candidate angiogenesis genes that were represented in Haplobank, and discovered multiple novel factors that affect blood vessel growth in organoids. Importantly, they observed a strong variability between independent clones, highlighting the advantage of repairable mutagenesis for comparing mutants with their genetically repaired sister clones.

“Haplobank can be used for screens to make entirely new insights into biology and health. Importantly - because gene knockouts can be repaired in our embryonic stem clones - this resource also enables well-controlled, robust and reproducible validation experiments. We feel this is a critical point and contribution, given the current efforts to improve the rigor of scientific research." Says Josef Penninger, IMBA Director and last author.

Origina lpublication: Elling, Wimmer et al. „A reversible haploid murine ES cell biobank for functional genomics”, Nature 10.1038/nature24027

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. www.imba.oeaw.ac.at

About the Vienna BioCenter
Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, business and education on a single campus: 1.700 employees, 1.300 students, 86 research groups and 18 biotech companies. Scientists from 65 nations create a highly dynamic environment of international standards. www.viennabiocenter.org

Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>