Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New guideline for DNA sequences could prevent erroneous data

05.11.2012
DNA sequence data is an indispensable source of research information in biology. But not all data are reliable.
Almost 10% of all fungal DNA sequences are, for example, incorrectly identified to species level. A international team of researchers, with it’s core at the University of Gothenburg, Sweden, has therefore prepared a guide to assist the scientific community in the quality control process.

A new scientific study sees the researchers putting together a number of guidelines to help other researchers to ensure a high level of quality among their newly generated DNA sequences.

Detailed studies
DNA sequences make it possible to study biological samples and environments at a level of detail that traditional tools, such as microscopes, cannot provide. It is, for example, possible to investigate what species are present in seemingly barren substrates such as soil and seawater. Such studies often reveal an astonishing and hitherto unimagined diversity, and biology has made major advances as the use of DNA-based methods has become more widespread.

Quality varies
But as with many other sources of information, DNA sequences vary in quality and reliability. Several studies have found considerable quality problems in existing DNA sequence databases.

To verify ones DNA Sequence dataset for basic quality and authenticity has thus become an important part of biological research.

“Many researchers perceive quality control as difficult,” says Henrik Nilsson at the University of Gothenburg. “There are, quite simply, no guidelines that you can hand out to new or established researchers so that everyone is using the same approach. Which is why there are major differences in how, and to what extent, quality control is carried out in the research community.”

Nilsson is the lead author of a new scientific article on DNA sequence quality which has been published in the open-access journal MycoKeys.

Cumbersome software
One complication is that the software that is available to carry out parts of the quality control is cumbersome and often requires considerable computer capacity. The research group feels that it is not appropriate to require all biologists to have access to and be able to use such complex computer systems.

This is why they have written an article describing how quality control can be carried out manually without any tools beyond an Internet browser.

A guide that will help many
The article features a number of principles and observations on DNA sequences at different quality stages. Although the guidelines focus on fungi, where DNA sequences have had a particularly significant impact as a research instrument, they are general and can be used for most genes and groups of organisms.

The guidelines relate to traditional DNA sequencing as it is used in systematics, taxonomy and ecology.

The researchers hope that it will help readers to improve their DNA sequences and so halt the trend of increasing noise in the public DNA sequence databases.

Contact:
Henrik Nilsson, researcher, Department of Biological and Environmental Sciences
Tel: +46 (0)31 786 2623, e-mail: henrik.nilsson@bioenv.gu.se

Carina Eliasson | idw
Further information:
http://www.gu.se
http://dx.doi.org/10.3897/mycokeys.4.3606

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>