Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The geometry of randomness

08.03.2010
Geometric factors can have a strong influence on the seemingly random walk of objects across pores in a thin membrane

When a butterfly flaps its wings in Europe, a storm may be caused in Asia. This often-used metaphor illustrates the strong resonances that may occur in random physical systems. Indeed, in systems affected by random effects, the influence of stimuli, such as external forces, on the eventual outcome is often poorly understood.

An international team of researchers working at the RIKEN Advanced Science Institute in Wako has now discovered that geometric factors can play an important role in random processes such as the movement of a particle through a cell membrane.

One particular consequence of random effects is stochastic resonance, where the movement of an object between two states—for example, across a membrane partitioning a box—depends on the external force, or ‘noise’ applied to the system. Certain levels of noise may even amplify the response of the system, so that the particle in the box travels faster from left to right. “Stochastic resonance is a common effect in electrical circuits or in biological sensory organs, where it is used to increase the system’s response,” says Franco Nori, who led the research team.

Stochastic resonance is a purely random effect, although the size and shape of a variety of constrained biological systems, such as pores or channels, can influence the response of the system, according to team member Pulak Kumar Ghosh.

The researchers therefore studied the influence of geometrical effects on stochastic resonance. “We considered systems where the membrane has different pore geometries,” says Fabio Marchesoni, also from the team. In order to stimulate a geometric response, the researchers simulated the effect of an oscillating force perpendicular to the membrane that shakes the particles back and forth. Previous studies of stochastic resonance effects showed that a force that produces no net movement should have no influence on the particle transport. Yet, Nori and colleagues observed a strong influence on the frequency of the driving force as well as its amplitude. In addition, the shape of the membrane and that of the surrounding cavities plays a role in the efficiency of the particle transfer.

Owing to the geometric dependence of this effect, the researchers have coined it ‘geometric stochastic resonance’, and expect to find it in certain physical systems. Team member Sergey Savel’ev suggests that, “the transport of magnetic fields across superconducting samples with thin barriers may be a good first experimental example that demonstrates geometric stochastic resonance.”

The corresponding author for this highlight is based at the Digital Materials Team, RIKEN Advanced Science Institute

Journal information
Ghosh, P.K., Marchesoni, F., Savel’ev, S.E. & Nori, F. Geometric stochastic resonance. Physical Review Letters 104, 020601 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6206
http://www.researchsea.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>