Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene hunt in dyslexia

13.10.2008
Letters are warped, syllables left out – about four percent of the German population are dyslexics. Scientists seek to spot responsible genes and try to develop a genetic screening test to support affected children at an earlier age.

Scool? Skuul? Or perhaps shcool? The beginning is a delicate time – especially in reading and writing. Twisted letters or other beginner´s mistakes disappear quite fast as learning progresses. Nevertheless about four percent of German schoolchildren struggle very hard with written words.

What is the cause for such a reading and writing disorder called dyslexia? “Dyslexia is not a matter of low intelligence. It is mainly caused genetically, as twin-studies have shown,” explains Arndt Wilcke, scientist at the Fraunhofer Institute for Cell Therapy and Immunology (IZI) in Leipzig. Relief could be rendered by a special support for affected children: the German free state of Saxony, for example, maintains classes for dyslexics, beginning with third grade of elementary education. Usually, the disorder is not noticed before the children learn to read and to write at the age of six to eight, but the largest part of speech development is already completed by this time. An accepted thesis is: the earlier a disposition to dyslexia is detected, the better are chances of success for remedial therapy. Supported at kindergarten age, most predisposed children learn reading and writing quite successfully.

Scientists at the IZI now try to improve the early discovery of dyslexia. “We are trying to find out which genes cause the disease. A predisposition to dyslexia could be detected by a genetic test to support affected children appropriately at a very early age,” says Wilcke.

The hypothesis of the IZI scientists is: during brain development at the embryonic stage nerve cells are migrating to their designated positions routed by specific genes. If these are defective the nerve cells do not go far enough or to the wrong places. This could be a cause for dyslexia. Evidence for responsible “dyslexia genes” is already existing. The first steps towards a genetic test have been taken, but more time will be needed to reach this aim – five years would be a realistic guess for Wilcke.

Arndt Wilcke | alfa
Further information:
http://www.fraunhofer.de/EN/press/pi/2008/10/ResearchNews102008Topic1.jsp

Further reports about: Cell Therapy Genetic IZI dyslexia dyslexia genes low intelligence nerve cells

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>