Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New function of a bacterial photoresponsive protein: Resisting adhesion of mammalian cells

01.03.2012
Non-fouling materials that resist cell adhesion are very important in fundamental research on cell–biomaterial interactions and for practical applications.

Thus, they have been extensively investigated during the last decade. Natural biomacromolecules such as bovine serum albumin (BSA) have conventionally been used to block cell adhesion. Zhao and Ding (Fudan University, Shanghai, China) recently reported that the purple membrane (PM) containing a natural photoresponsive protein, bacteriorhodopsin (BR), can serve as a new basic substance that resists adhesion of mammalian cells.


Purple membrane containing the retinal protein bacteriorhodopsin (BR) was coated onto glass. The coated film resisted adhesion of mammalian cells, while the purple membrane retained its biological activity. This is the first report of a non-fouling substrate with photoelectric and photochromic responses. This material consists of natural biomacromolecules. Credit: © Science China Press

BR is a retinal-containing bacterial protein that is present in the PM region of the bacterial membrane. The PM is the simplest biological system for energy conversion. Excitation of BR with a photon causes a photocycle, resulting in uptake of a proton from the cytoplasmic side of the PM and release of another proton to the extracellular side. BR and similar retinal proteins have attracted much attention as potential optical materials for applications in 2-D or 3-D storage, holographic storage, optical filtering, light switching, neural networks, super-fast photo detection, motion detection, and artificial retinas, etc., and also as model proteins in fundamental research.

Nevertheless, the PM had not been recognized as a non-fouling material for preventing cell adhesion. Adhesion is the first cellular event that occurs when a cell comes into contact with a material surface, and it influences subsequent cellular events such as proliferation and differentiation. Non-fouling surfaces are useful for studies on cell–material interactions for generating patterned surfaces of contrasting adhesion, and they are also useful for controlling cellular and bacterial adhesion in medical applications and/or in complex bio-related environments. A number of non-fouling substances have been reported, including polyethylene glycol (PEG) or oligoethylene glycol (OEG), PEG hydrogels, poly(N-isopropylacrylamide) or its copolymers, and the globular protein, BSA. This study affords a new choice of non-fouling substance, because the PM containing the membrane protein BR was shown to resist cell adhesion.

Our results reveal that the natural PM has significant resistance to cell adhesion. This non-fouling property is very beneficial for potential applications of BR materials, for instance, as biosensors in complex environments. The finding also affords an excellent model substance that resists cell adhesion, which could be useful in surface modification of biomaterials for regenerative medicine. The photoresponsive property of BR distinguishes it from all of the currently known anti-fouling substances.

It is also worth noting that many other retinal proteins such as rhodopsin, halorhodopsin, xanthorhodopsin, and archaerhodopsin, are light-driven ion pumps. Therefore, a direct extension of this work would be to examine possible non-fouling properties of other retinal proteins. Further studies are required examine the resistance to adhesion of other types of mammalian and non-mammalian cells. Hence, while the mechanism by which the PM prevents non-specific protein absorption remains an open question, this report paves the way for further investigations and new applications of BR and possibly other light-sensitive proteins.

Reference
Zhao YC, Ding JD. Purple membrane resists cell adhesion. Chin. Sci. Bull., 2012, 57(2-3), 234-237

Ding Jian-dong | EurekAlert!
Further information:
http://www.fudan.edu.cn

More articles from Life Sciences:

nachricht Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow
16.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>