Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New function of a bacterial photoresponsive protein: Resisting adhesion of mammalian cells

01.03.2012
Non-fouling materials that resist cell adhesion are very important in fundamental research on cell–biomaterial interactions and for practical applications.

Thus, they have been extensively investigated during the last decade. Natural biomacromolecules such as bovine serum albumin (BSA) have conventionally been used to block cell adhesion. Zhao and Ding (Fudan University, Shanghai, China) recently reported that the purple membrane (PM) containing a natural photoresponsive protein, bacteriorhodopsin (BR), can serve as a new basic substance that resists adhesion of mammalian cells.


Purple membrane containing the retinal protein bacteriorhodopsin (BR) was coated onto glass. The coated film resisted adhesion of mammalian cells, while the purple membrane retained its biological activity. This is the first report of a non-fouling substrate with photoelectric and photochromic responses. This material consists of natural biomacromolecules. Credit: © Science China Press

BR is a retinal-containing bacterial protein that is present in the PM region of the bacterial membrane. The PM is the simplest biological system for energy conversion. Excitation of BR with a photon causes a photocycle, resulting in uptake of a proton from the cytoplasmic side of the PM and release of another proton to the extracellular side. BR and similar retinal proteins have attracted much attention as potential optical materials for applications in 2-D or 3-D storage, holographic storage, optical filtering, light switching, neural networks, super-fast photo detection, motion detection, and artificial retinas, etc., and also as model proteins in fundamental research.

Nevertheless, the PM had not been recognized as a non-fouling material for preventing cell adhesion. Adhesion is the first cellular event that occurs when a cell comes into contact with a material surface, and it influences subsequent cellular events such as proliferation and differentiation. Non-fouling surfaces are useful for studies on cell–material interactions for generating patterned surfaces of contrasting adhesion, and they are also useful for controlling cellular and bacterial adhesion in medical applications and/or in complex bio-related environments. A number of non-fouling substances have been reported, including polyethylene glycol (PEG) or oligoethylene glycol (OEG), PEG hydrogels, poly(N-isopropylacrylamide) or its copolymers, and the globular protein, BSA. This study affords a new choice of non-fouling substance, because the PM containing the membrane protein BR was shown to resist cell adhesion.

Our results reveal that the natural PM has significant resistance to cell adhesion. This non-fouling property is very beneficial for potential applications of BR materials, for instance, as biosensors in complex environments. The finding also affords an excellent model substance that resists cell adhesion, which could be useful in surface modification of biomaterials for regenerative medicine. The photoresponsive property of BR distinguishes it from all of the currently known anti-fouling substances.

It is also worth noting that many other retinal proteins such as rhodopsin, halorhodopsin, xanthorhodopsin, and archaerhodopsin, are light-driven ion pumps. Therefore, a direct extension of this work would be to examine possible non-fouling properties of other retinal proteins. Further studies are required examine the resistance to adhesion of other types of mammalian and non-mammalian cells. Hence, while the mechanism by which the PM prevents non-specific protein absorption remains an open question, this report paves the way for further investigations and new applications of BR and possibly other light-sensitive proteins.

Reference
Zhao YC, Ding JD. Purple membrane resists cell adhesion. Chin. Sci. Bull., 2012, 57(2-3), 234-237

Ding Jian-dong | EurekAlert!
Further information:
http://www.fudan.edu.cn

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>