Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Bats Navigate with Internal Maps

16.08.2011
Israeli scientists fitted fruit bats with the world’s smallest GPS devices
to track their homing flight after relocation far away

GPS technology can make our travels easier and more efficient. But for many animals, the ability to successfully navigate a landscape is not just a matter of convenience – their very survival depends on it.

Egyptian fruit bats, for instance, fly dozens of kilometers each night to feed on specific fruit trees, making the return trip the same night. To understand how the bats locate individual trees night after night, scientists attached tiny GPS devices to the bats in the first-ever comprehensive GPS-based field study of mammal navigation.

The results of this study showed that the bats carry around an internal, cognitive map of their home range, based on visual landmarks, such as lights or hills, but the study also suggests an additional,, large-scale navigational mechanism. The study, which appears August 15 in the Proceedings of the National Academy of Sciences (PNAS), reveals for the first time how free-ranging mammals find their way around their natural environment.

Many researchers have investigated the navigational skills of other creatures – birds, fish, insects, lobsters, turtles, etc. – but studies of mammalian navigation have been confined to the laboratory. Unfortunately, lab studies cannot duplicate the large, complex landscapes an animal must navigate in the natural world.

The new GPS-based method gives researchers the best of both worlds. This new approach to studying bat navigation was developed by a group of researchers from several institutions and disciplines: ecologists studying movements of animals in the wild: Ph.D. student Asaf Tsoar from the Movement Ecology Lab and his supervisor Prof. Ran Nathan from the Hebrew University of Jerusalem; a neurobiologist studying the neural basis of navigation: Dr. Nachum Ulanovsky of the Weizmann Institute, in collaboration with Giacomo Dell'Omo of Ornis Italica, Italy, and Alexei Vyssotski of ETH Zurich, Switzerland.

In this collaborative effort, the team developed miniaturized GPS devices – each weighing around 10 grams and containing tiny GPS receivers, in addition to a memory logger and battery. They used the devices to track the movements of Egyptian fruit bats (Rousettus aegyptiacus) over several consecutive nights.

At first, the researchers collected data as the bats took flight each night from a cave near the Israeli city of Beit Shemesh. These bats flew in a straight line at speeds of 40 km an hour and more and at elevations of hundreds of meters to trees that were about 12 to 25 km from their cave.

They went to the same trees, night after night, even bypassing apparently identical trees that were nearer to home. The data showed that bats’ navigational abilities rival those of homing pigeons.

The fact that the bats bypassed similar fruit trees to get to their favorite feeding site ruled out smell as their main navigational aid, while an analysis of the data suggested that the bats were not simply “beaconing” on any visual or other individual cue.

To investigate further, the scientists took some of the bats to a new area in the desert, 44 kilometers south of their normal range. Some bats were released at dusk; others were fed in the new area and released just before dawn. Those released first had no trouble navigating to their favorite fruit trees, returning straight back to their caves afterward. Those who were fed first simply made a beeline back to the cave once they were released.

Based on a spatial model analysis, and after discussions with pilots, it appeared, though, that the bats could have seen some familiar visual landmarks – hills or the lights of human settlements – from this release site near Beersheba in southern Israel.

To prevent the bats from using visual landmarks to guide them, the researchers removed the bats even further south, to a natural depression that limited their field of vision: the Large Crater, located some 84 km south of their cave. Here, some of the bats were released from a hilltop at the edge of the crater and others were let go at the crater’s bottom.

Despite the distance, those flying from the hilltop oriented themselves right away and flew back to the cave. The bats inside the crater, however, appeared disoriented, wandering for quite a while before finding their way out of the crater and back to the cave. This confirmed the idea that bats use visual information from a “bird’s eye view” to construct a cognitive map of a wide area. Navigational cues include these distant landmarks, and the scientists believe that the bats most likely compute their own location by employing a form of triangulation based on the different azimuths to known distant landmarks.

Because most of the bats released in the crater, when they finally left, exited to the north (the direction of home), Tsoar, Nathan and Ulanovsky believe that the bats may have an additional, back-up navigational mechanism to help when landmarks are unreliable. This mechanism might involve sensing the magnetic fields or directional odors carried on the sea breeze from the Mediterranean to the Negev Desert.

Although lab experiments based on distances of a meter or two had hinted at the existence of an internal map for navigation, this study is the first to show that such mammals as fruit bats use these maps to find their way around areas 100 km in size.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: GPS data GPS devices GPS-based bats cognitive map fresh fruit fruit bat fruit trees magnetic field

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>