Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Bats Navigate with Internal Maps

16.08.2011
Israeli scientists fitted fruit bats with the world’s smallest GPS devices
to track their homing flight after relocation far away

GPS technology can make our travels easier and more efficient. But for many animals, the ability to successfully navigate a landscape is not just a matter of convenience – their very survival depends on it.

Egyptian fruit bats, for instance, fly dozens of kilometers each night to feed on specific fruit trees, making the return trip the same night. To understand how the bats locate individual trees night after night, scientists attached tiny GPS devices to the bats in the first-ever comprehensive GPS-based field study of mammal navigation.

The results of this study showed that the bats carry around an internal, cognitive map of their home range, based on visual landmarks, such as lights or hills, but the study also suggests an additional,, large-scale navigational mechanism. The study, which appears August 15 in the Proceedings of the National Academy of Sciences (PNAS), reveals for the first time how free-ranging mammals find their way around their natural environment.

Many researchers have investigated the navigational skills of other creatures – birds, fish, insects, lobsters, turtles, etc. – but studies of mammalian navigation have been confined to the laboratory. Unfortunately, lab studies cannot duplicate the large, complex landscapes an animal must navigate in the natural world.

The new GPS-based method gives researchers the best of both worlds. This new approach to studying bat navigation was developed by a group of researchers from several institutions and disciplines: ecologists studying movements of animals in the wild: Ph.D. student Asaf Tsoar from the Movement Ecology Lab and his supervisor Prof. Ran Nathan from the Hebrew University of Jerusalem; a neurobiologist studying the neural basis of navigation: Dr. Nachum Ulanovsky of the Weizmann Institute, in collaboration with Giacomo Dell'Omo of Ornis Italica, Italy, and Alexei Vyssotski of ETH Zurich, Switzerland.

In this collaborative effort, the team developed miniaturized GPS devices – each weighing around 10 grams and containing tiny GPS receivers, in addition to a memory logger and battery. They used the devices to track the movements of Egyptian fruit bats (Rousettus aegyptiacus) over several consecutive nights.

At first, the researchers collected data as the bats took flight each night from a cave near the Israeli city of Beit Shemesh. These bats flew in a straight line at speeds of 40 km an hour and more and at elevations of hundreds of meters to trees that were about 12 to 25 km from their cave.

They went to the same trees, night after night, even bypassing apparently identical trees that were nearer to home. The data showed that bats’ navigational abilities rival those of homing pigeons.

The fact that the bats bypassed similar fruit trees to get to their favorite feeding site ruled out smell as their main navigational aid, while an analysis of the data suggested that the bats were not simply “beaconing” on any visual or other individual cue.

To investigate further, the scientists took some of the bats to a new area in the desert, 44 kilometers south of their normal range. Some bats were released at dusk; others were fed in the new area and released just before dawn. Those released first had no trouble navigating to their favorite fruit trees, returning straight back to their caves afterward. Those who were fed first simply made a beeline back to the cave once they were released.

Based on a spatial model analysis, and after discussions with pilots, it appeared, though, that the bats could have seen some familiar visual landmarks – hills or the lights of human settlements – from this release site near Beersheba in southern Israel.

To prevent the bats from using visual landmarks to guide them, the researchers removed the bats even further south, to a natural depression that limited their field of vision: the Large Crater, located some 84 km south of their cave. Here, some of the bats were released from a hilltop at the edge of the crater and others were let go at the crater’s bottom.

Despite the distance, those flying from the hilltop oriented themselves right away and flew back to the cave. The bats inside the crater, however, appeared disoriented, wandering for quite a while before finding their way out of the crater and back to the cave. This confirmed the idea that bats use visual information from a “bird’s eye view” to construct a cognitive map of a wide area. Navigational cues include these distant landmarks, and the scientists believe that the bats most likely compute their own location by employing a form of triangulation based on the different azimuths to known distant landmarks.

Because most of the bats released in the crater, when they finally left, exited to the north (the direction of home), Tsoar, Nathan and Ulanovsky believe that the bats may have an additional, back-up navigational mechanism to help when landmarks are unreliable. This mechanism might involve sensing the magnetic fields or directional odors carried on the sea breeze from the Mediterranean to the Negev Desert.

Although lab experiments based on distances of a meter or two had hinted at the existence of an internal map for navigation, this study is the first to show that such mammals as fruit bats use these maps to find their way around areas 100 km in size.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: GPS data GPS devices GPS-based bats cognitive map fresh fruit fruit bat fruit trees magnetic field

More articles from Life Sciences:

nachricht What does DNA's repair shop look like? New research identifies the tools
05.12.2019 | New York University

nachricht Detailed insight into stressed cells
05.12.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>