Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies Process Attractive and Deterrent Odors in Different Brain Areas

25.04.2012
Newly developed analytic device "Flywalk" allows accurate studies of insect behavior to be made

In collaboration with colleagues from Portugal and Spain, researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have developed an apparatus that automatically applies odors to an airstream, while filming and analyzing the behavior of insects simultaneously.


Drosophila fly in a glass Flywalk tube
Max Planck Institute for Chemical Ecology/Knaden


Two views inside the brain of a fruit fly while it is smelling; left: active glomeruli (represented by bright colors) after stimulation with a deterrent odor (linalool); right: active glomeruli after application of an attractant (3-methylthio-1-propanol). This shows that deterrent responses are generated in lateral areas of the brain, whereas attractant responses are generated in medial areas. Max Planck Institute for Chemical Ecology/Strutz

The system is called Flywalk and consists of glass tubes, airstream regulators, and a video camera. The reactions of 15 flies to up to eight different odorant signals can be tested at the same time. A first series of tests revealed that male and female fruit flies responded differently to attractant substances.

The tests confirmed that male flies were no longer attracted to females that had already mated with another male because of the particular odor, cis-vaccenyl acetate, surrounding these females. Two further publications report on the processing of odor signals in the insect brain. (Nature Scientific Reports, Cell Reports, Journal of Experimental Biology)

Quantification of behavioral patterns

Flywalk can exactly measure the responses of insects to odor signals. If insects run upwind, i.e. against the direction of the airstream, the odor is rated as attractive; if they stop or run downwind, the odor is deterrent. The system allows the use of not only single odorants but also odor mixtures. In addition, odor pulses of varying length and concentration can be given. The high throughput and the long automated measurement periods − the insects can stay in the Flywalk tubes for up to eight hours − facilitate the statistical analysis of the results.

Fruit flies: New pheromone

Experiments with fruit flies demonstrated that females − in contrast to males − were more attracted by typical food odors, such as ethyl acetate. This behavior seems to reflect the search for the best oviposition place in order to make sure that the larval offspring will find sufficient food after hatching. The response to deterrent odors, such as benzaldehyde, was identical in both males and females. Males, on the other hand, responded positively to the odor of unmated females: If the odor surrounding virgin females was introduced into the Flywalk tubes, the males moved upwind. “This way, we demonstrated for the first time that females, as observed in other insect species, attract their mates with odors. The chemistry of these odorant substances is currently being analyzed,” says Kathrin Steck, who carried out the experiments. The substance that renders mated females unattractive to males willing to mate is already known: cis-vaccenyl acetate. With this odor a male marks the female during copulation. Thus a male fruit fly prevents further fertilization by other males and makes sure that his genes are spread.

From odorant receptor to behavior: What happens in the brain?

For a recently published study in Cell Reports, scientists scrutinized the tiny brains of fruit flies. Using specific activity markers, they measured certain nerve cells, the so-called projection neurons, which are located in the antennal lobe, the olfactory center of flies. Experiments performed with six highly attractive and six highly deterrent odors, selected out of 110 different and tested compounds, revealed that attractive and deterrent odors are processed in specific brain regions of the flies (see picture), as has already been shown in mice and humans. “The function of an insect brain thus resembles that of a mammalian brain more than previously thought,” the researchers write. Because the activity of projection neurons already reflects a kind of “interpretation” of incoming odorant signals, the assessments “good” or “bad” which ultimately regulate the flies’ behavior seem to be represented early in the insects’ brains.

Host generalists and specialists
Activity measurements in the antennal lobes of Lepidopteran species Spodoptera littoralis (Egyptian cotton leafworm) and Spodoptera exigua (beet armyworm), dreaded agricultural pests, showed that neurons responded very specifically to individual plant odors. These results correspond to the feeding habits of these insects: Both moths infest more than 100 different plant genera, among them many crop plants, and must therefore be able to accurately associate an odor with a particular plant species. Because of their broad host range, these insects are known as host generalists. In comparison, three specialist species, namely Acherontia atropos (death's-head hawkmoth), Smerinthus ocellata (eyed hawkmoth), and Manduca sexta (tobacco hornworm), seem to have specialized in the recognition of only a few host plants: different odors often generated similar or even identical excitation patterns in the brains of the moths. [JWK/AO]

Original publications:

Kathrin Steck, Daniel Veit, Ronald Grandy, Sergi Bermúdez i Badia, Zenon Mathews, Paul Verschure, Bill S. Hansson, Markus Knaden. A high-throughput behavioral paradigm for Drosophila olfaction - the Flywalk. Nature Scientific Reports 2, 361; doi: 10.1038/srep00361 (2012)

Markus Knaden, Antonia Strutz, Jawaid Ahsan, Silke Sachse, Bill S. Hansson. Spatial representation of odorant valence in an insect brain. Cell Reports 1, 392-399; doi:10.1016/j.celrep.2012.03.002 (2012)

Sonja Bisch-Knaden, Mikael A. Carlsson, Yuki Sugimoto, Marco Schubert, Christine Mißbach, Silke Sachse, Bill S. Hansson. Olfactory coding in five moth species from two families. The Journal of Experimental Biology 215, 1542-1551; doi: 10.1242/jeb.068064 (2012)

Further Information:

Dr. Markus Knaden, +49 3641 57-1421, mknaden@ice.mpg.de
Prof. Dr. Bill S. Hansson, +49 3641 57-1401, hansson@ice.mpg.de
Pictures:

Angela Overmeyer M.A., 49 3641 57-2110, overmeyer@ice.mpg.de
or download from http://www.ice.mpg.de/ext/735.html

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/735.html

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>