Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish oil helps transform fat cells from storage to burning

17.12.2015

Kyoto University shows how fish oil can improve fat metabolism in mice

Researchers have found that fish oil transforms fat-storage cells into fat-burning cells, which may reduce weight gain in middle age.


Kyoto University researchers have found that fish oil transforms fat-storage cells into fat-burning cells, which may reduce weight gain in middle age. Fish oil activates receptors in the digestive tract, fires the sympathetic nervous system, and induces storage cells to metabolize fat.

Credit: Eiri Ono/Kyoto University

The team explains in Scientific Reports that fish oil activates receptors in the digestive tract, fires the sympathetic nervous system, and induces storage cells to metabolize fat.

Fat tissues don't all store fat. So-called "white" cells store fat in order to maintain energy supply, while "brown" cells metabolize fat to maintain a stable body temperature. Brown cells are abundant in babies but decrease in number with maturity into adulthood.

A third type of fat cell -- "beige" cells -- have recently been found in humans and mice, and have shown to function much like brown cells. Beige cells also reduce in number as people approach middle age; without these metabolizing cells, fat continues accumulating for decades without ever being used.

The scientists investigated whether the number of these beige cells could be increased by taking in certain types of foods.

"We knew from previous research that fish oil has tremendous health benefits, including the prevention of fat accumulation," says senior author Teruo Kawada. "We tested whether fish oil and an increase in beige cells could be related."

The team fed a group of mice fatty food, and other groups fatty food with fish oil additives. The mice that ate food with fish oil, they found, gained 5-10% less weight and 15-25% less fat compared to those that did not consume the oil.

They also found that beige cells formed from white fat cells when the sympathetic nervous system was activated, meaning that certain fat-storage cells acquired the ability to metabolize.

"People have long said that food from Japan and the Mediterranean contribute to longevity, but why these cuisines are beneficial was up for debate," adds Kawada. "Now we have better insight into why that may be."

###

The paper "Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system" will appear 17 December 2015 in Scientific Reports, with doi: 10.1038/srep18013

See also: http://kyoto-u.ac.jp/en/research/research_results/2015/151218_1.html/

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Anna Ikarashi | EurekAlert!

More articles from Life Sciences:

nachricht The architecture of a 'shape-shifting' norovirus
01.04.2020 | University of Leeds

nachricht Less expensive, more effective pneumonia vaccines are tested in humans
01.04.2020 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Extreme high-frequency signals enable terabits-per-second data links

01.04.2020 | Physics and Astronomy

The architecture of a 'shape-shifting' norovirus

01.04.2020 | Life Sciences

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>