Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First step to induce self-repair in the central nervous system

11.07.2019

Injured axons instruct Schwann cells to build specialized actin spheres to break down and remove axon fragments, thereby starting the regeneration process

Damaged peripheral nerves can regenerate after an injury, for example, following a forearm fracture. Axons, the long projections of neurons that transmit stimuli or signals to other cells, are affected in the case of injury and need to regrow to recover their function.


Actin spheres (green) wrapped around a severed axon (red)

photo/©: Adrien Vaquié (Cell Reports, DOI: 10.1016/j.celrep.2019.05.060)

The research team led by Prof. Claire Jacob at Johannes Gutenberg University Mainz (JGU) and at the Swiss University of Fribourg investigated the details of this repair process and have demonstrated that the same mechanism could be activated in cells of the central nervous system – after a spinal cord injury, for instance. Their results have been published in the renowned journal Cell Reports.

“An injury in the peripheral nervous system quickly triggers the activation of a fascinating repair process that allows the injured nerve to regenerate and regain its function. There is no such repair process in the central nervous system, thus injuries often lead to permanent damage such as paraplegia,” explains Claire Jacob, Head of Cellular Neurobiology at JGU. Strategies to improve axon regeneration in the central nervous system must therefore be developed to enable healing.

Myelin-forming cells are key to the axon regeneration process. Many axons are ensheathed by myelin, which serves as a protective layer while also enabling fast and efficient signal transmission.

“Myelin is extremely important for the function of the entire nervous system, however it also hinders the repair process in case of an injury,” adds Claire Jacob. Myelin is produced by Schwann cells in the peripheral nervous system and by oligodendrocytes in the central nervous system; this difference has a major impact on axon regeneration, because Schwann cells and oligodendrocytes respond very differently to axonal injury.

Schwann cells can do everything – they break down myelin and damaged axons

When axons of the peripheral nervous system are injured, Schwann cells rapidly induce the disintegration of the cut-out axonal segments into small fragments, which can then be digested by Schwann cells themselves or later by macrophages. This elimination of axonal debris is one of the first and critical steps of the repair process.

“Schwann cells can do everything. We discovered that they not only digest myelin following injury, but they also induce the disintegration of the long axon segments that are separated from their cell bodies due to the injury,” points out Claire Jacob.

In order to do that, Schwann cells form small spheres made of a protein called actin; these actin spheres exert pressure on the isolated axon segments until their disintegration into small pieces. This targeted degradation of cell debris is essential to enable the healthy part of the axon that remained attached to the neuron cell body to grow back, connect to its former target and thereby regain full functionality.

Severed axons transmit signals to Schwann cells

Of particular interest, the Jacob team found that severed axonal segments send a signal to Schwann cells that prompts them to start the actin sphere formation and axon disintegration process, an impressive and precisely coordinated form of interaction between the two cell types. If this mechanism is disrupted, axonal disintegration is slowed down and axonal fragments impair the regeneration of the affected nerve.

Manipulated oligodendrocytes can also generate actin structures

Claire Jacob’s team went on to study the central nervous system and the behavior of oligodendrocytes. “After an injury, oligodendrocytes either die or remain apparently unresponsive,” says Claire Jacob. Oligodendrocytes are not (normally) able, like Schwann cells, to form actin spheres and thus break down axon segments. One reason for this is that, unlike Schwann cells, they do not express VEGFR1, the receptor that triggers the production of actin spheres in Schwann cells.

In the next step, the research team induced the expression of VEGFR1 in oligodendrocytes. This allowed oligodendrocytes to produce actin structures and disintegrate severed axonal fragments; this is an essential step to promote the regeneration of neurons in the central nervous system.

The team is currently working at identifying the molecular processes that trigger the removal of myelin at the site of injury in the central nervous system. In addition to the disposal of axonal debris, myelin removal is a second prerequisite necessary for the complete regeneration of neurons.

“We have discovered a pathway that accelerates myelin degradation in the peripheral nervous system and are now trying to determine whether this can also trigger myelin removal in the central nervous system,” adds Claire Jacob, describing the results of on-going research in her lab.

Claire Jacob is the head of the Cellular Neurobiology Group at Johannes Gutenberg University Mainz since October 2018. The article, published in Cell Reports, includes findings from the research groups at the Universities of Fribourg (Switzerland) and Mainz. In September 2018, Claire Jacob was awarded the prestigious IRP Schellenberg Research Prize.

Video:
https://www.cell.com/cms/10.1016/j.celrep.2019.05.060/attachment/3d5f4010-3ff7-4...
Schwann cells breaking down long axonal segments into small fragments: Live cell imaging (confocal microscopy) of axons (red) and Schwann cells (green). 3D time-lapse reconstruction with images taken every 20 minutes for 19 hours after axonal injury (7 frames/second).
Video/©: Adrien Vaquié (Cell Reports, DOI: 10.1016/j.celrep.2019.05.060)

Image:
http://www.uni-mainz.de/bilder_presse/10_idn_neurobiologie_schwann-zellen_odz.jp...
Actin spheres (green) wrapped around a severed axon (red)
photo/©: Adrien Vaquié (Cell Reports, DOI: 10.1016/j.celrep.2019.05.060)

Related links:
https://www3.unifr.ch/bio/en/groups/jacob/ - Jacob Group, Université de Fribourg

Wissenschaftliche Ansprechpartner:

Prof. Dr. Claire Jacob
Cellular Neurobiology
Institute of Developmental Biology and Neurobiology (IDN)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-28936
e-mail: cjacob@uni-mainz.de
https://www.bio.uni-mainz.de/

Originalpublikation:

Adrien Vaquié et al.
Injured Axons Instruct Schwann Cells to Build Constricting Actin Spheres to Accelerate Axonal Disintegration
Cell Reports, June 11, 2019
DOI: 10.1016/j.celrep.2019.05.060
https://www.cell.com/cell-reports/fulltext/S2211-1247%2819%2930689-8

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Observing changes in the chirality of molecules in real time
15.11.2019 | ETH Zurich

nachricht Pinpointing Pollutants from Space
14.11.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

 
Latest News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

A step closer to cancer precision medicine

15.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>