Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eyes wide shut

29.03.2010
Different cell types in the visual cortex respond differently to changes in visual experience

In the primary visual cortex of the brain, neurons are organized into alternating columns that receive inputs from either the left or right eye. This organization is strongly dependent on early visual experience.

When one eye is deprived of visual inputs during a critical developmental period, the corresponding columns fail to develop properly, whereas those receiving inputs from the unaffected eye grow larger than normal.

The cortex consists primarily of two different types of neuron: excitatory neurons that synthesize and release the neurotransmitter glutamate, and inhibitory interneurons which use the transmitter ã-aminobutyric acid (GABA). How each of these cell types contributes to experience-dependent changes in the visual cortex is, however, unknown.

To investigate this, Tadaharu Tsumoto of the RIKEN Brain Science Institute, Wako, and his colleagues injected a calcium-sensitive dye, Fura-2, into the visual cortex of genetically engineered mice whose inhibitory interneurons express a fluorescent protein called Venus1. The intensity of Fura-2 fluorescence changes in response to the increase in calcium ion concentration that is characteristic of neuronal activity.

This approach enabled the researchers to both identify the interneurons in the visual cortex and monitor their activity. In animals reared normally, they first identified the ‘binocular’ regions of the primary visual cortex by visually stimulating each eye in turn, and using two-photon laser-scanning microscopy to locate the cells that responded to both. This revealed that inhibitory interneurons are more responsive to inputs from both eyes than excitatory neurons.

The responses in mice deprived of visual inputs to one eye for two days during the critical period were then examined. The change in the responses of both cell types was found to be similar—both had become more responsive to inputs from the open eye.

When mice were deprived of visual inputs to one eye after the critical period, however, the effect observed was far stronger on the inhibitory interneurons. They tended to receive inputs from the open eye, and their responses to inputs from the closed eye were also depressed, whereas those of the excitatory neurons remained almost stable. The interneurons normally act to inhibit the excitatory neurons, so their depressed responses may contribute to the stability of excitatory neuron responses to the deprived eye.

“Inhibitory interneurons are divided into several subtypes,” says Tsumoto. So, the next step is to determine which particular subtypes are involved in maintaining plasticity after the critical period.

The corresponding author for this highlight is based at the Laboratory for Cortical Circuit Plasticity, RIKEN Brain Science Institute

Journal information

1. Kameyama, K., Sohya, K., Ebina, T., Fukuda, A., Yanagawa, Y. & Tsumoto, T. Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons. Journal of Neuroscience 30, 1551–1559 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6224
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>