Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eliminating protein in specific brain cells blocks nicotine reward

27.07.2011
Animal study suggests a common process for both the pleasurable and anxiety-reducing effects of nicotine

Removing a protein from cells located in the brain's reward center blocks the anxiety-reducing and rewarding effects of nicotine, according to a new animal study in the July 27 issue of The Journal of Neuroscience. The findings may help researchers better understand how nicotine affects the brain.

Nicotine works by binding to proteins called nicotinic receptors on the surface of brain cells. In the new study, researchers led by Tresa McGranahan, Stephen Heinemann, PhD, and T. K. Booker, PhD, of the Salk Institute for Biological Studies, found that removing a specific type of nicotinic receptor from brain cells that produce dopamine — a chemical released in response to reward — makes mice less likely to seek out nicotine. The mice also did not show reductions in anxiety-like behaviors normally seen after nicotine treatment. Smokers commonly report anxiety relief as a key factor in continued smoking or relapse.

"These findings show that the rewarding and anxiety-reducing properties of nicotine, thought to play a key role in the development of tobacco addiction, are related to actions at a single set of brain cells," said Paul Kenny, PhD, an expert on drug addiction at Scripps Research Institute, who was unaffiliated with the study.

Previous studies showed blocking the alpha4 nicotinic receptor within the ventral tegmental area (VTA) — a brain region important in motivation, emotion, and addiction — decreases the rewarding properties of nicotine. Because alpha4 receptors are present on several cell types in the VTA, it was unclear how nicotine produced pleasurable feelings.

To zero in on the circuit important in the brain's response to nicotine, researchers developed mice with a mutation that left them unable to produce the alpha4 receptor, but only on dopamine brain cells. Mice lacking alpha4 receptors in these cells spent less time looking to obtain nicotine compared with normal mice, suggesting the alpha4 receptors are required for the rewarding effects of nicotine. Nicotine also failed to reduce anxiety-like behaviors in the mutant mice, as it normally does in healthy mice.

"Identification of the type of nicotinic receptors necessary for two key features of nicotine addiction — reward and anxiety — may help us better understand the pathway that leads to nicotine dependence, and potential treatment for the one billion cigarette smokers worldwide," McGranahan said. Diseases from tobacco use remain a major killer throughout the world, causing more than 5 million deaths per year.

The findings could guide researchers to a better understanding of the mechanisms of tobacco addiction and assist in the development of new drugs to treat tobacco addiction and provide relief from anxiety disorders, Kenny added.

The research was supported by the National Institute of Neurological Disorders and Stroke, the National Institute on Alcohol Abuse and Alcoholism, and the National Institute on Drug Abuse.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 40,000 basic scientists and clinicians who study the brain and nervous system. McGranahan can be reached at tmcgranahan@ucsd.edu. More information on the science of addiction can be found in the Society's Brain Briefings and Research & Discoveries publications.

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>