Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ectopic Eyes Function Without Connection to Brain

01.03.2013
Experiments with tadpoles show ectopic eyes that "see"

For the first time, scientists have shown that transplanted eyes located far outside the head in a vertebrate animal model can confer vision without a direct neural connection to the brain.


Images courtesy of D. Blackiston and M. Levin

Researchers at Tufts University have shown that transplanted eyes located far outside the head in a vertebrate animal model can confer vision without a direct neural connection to the brain. In this image, a "blind" tadpole without its native (normal) eyes is able to see using a functioning ectopic eye located in tail. Dark area in midsection is the stomach.

Biologists at Tufts University School of Arts and Sciences used a frog model to shed new light – literally – on one of the major questions in regenerative medicine, bioengineering, and sensory augmentation research.

"One of the big challenges is to understand how the brain and body adapt to large changes in organization," says Douglas J. Blackiston, Ph.D., first author of the paper "Ectopic Eyes Outside the Head in Xenopus Tadpoles Provide Sensory Data For Light-Mediated Learning," in the February 27 issue of the Journal of Experimental Biology. "Here, our research reveals the brain's remarkable ability, or plasticity, to process visual data coming from misplaced eyes, even when they are located far from the head.”

Blackiston is a post-doctoral associate in the laboratory of co-author Michael Levin, Ph.D., professor of biology and director of the Center for Regenerative and Developmental Biology at Tufts University.

Levin notes, "A primary goal in medicine is to one day be able to restore the function of damaged or missing sensory structures through the use of biological or artificial replacement components. There are many implications of this study, but the primary one from a medical standpoint is that we may not need to make specific connections to the brain when treating sensory disorders such as blindness."

In this experiment, the team surgically removed donor embryo eye primordia, marked with fluorescent proteins, and grafted them into the posterior region of recipient embryos. This induced the growth of ectopic eyes. The recipients’ natural eyes were removed, leaving only the ectopic eyes.

Fluorescence microscopy revealed various innervation patterns but none of the animals developed nerves that connected the ectopic eyes to the brain or cranial region.

To determine if the ectopic eyes conveyed visual information, the team developed a computer-controlled visual training system in which quadrants of water were illuminated by either red or blue LED lights. The system could administer a mild electric shock to tadpoles swimming in a particular quadrant. A motion tracking system outfitted with a camera and a computer program allowed the scientists to monitor and record the tadpoles' motion and speed.

Eyes See Without Wiring to Brain

The team made exciting discoveries: Just over 19 percent of the animals with optic nerves that connected to the spine demonstrated learned responses to the lights. They swam away from the red light while the blue light stimulated natural movement.

Their response to the lights elicited during the experiments was no different from that of a control group of tadpoles with natural eyes intact. Furthermore, this response was not demonstrated by eyeless tadpoles or tadpoles that did not receive any electrical shock.

"This has never been shown before," says Levin. "No one would have guessed that eyes on the flank of a tadpole could see, especially when wired only to the spinal cord and not the brain."

The findings suggest a remarkable plasticity in the brain’s ability to incorporate signals from various body regions into behavioral programs that had evolved with a specific and different body plan.

"Ectopic eyes performed visual function," says Blackiston. "The brain recognized visual data from eyes that impinged on the spinal cord. We still need to determine if this plasticity in vertebrate brains extends to different ectopic organs or organs appropriate in different species."

One of the most fascinating areas for future investigation, according to Blackiston and Levin, is the question of exactly how the brain recognizes that the electrical signals coming from tissue near the gut is to be interpreted as visual data.

In computer engineering, notes Levin, who majored in computer science and biology as a Tufts undergraduate, this problem is usually solved by a "header"—a piece of metadata attached to a packet of information that indicates its source and type. Whether electric signals from eyes impinging on the spinal cord carry such an identifier of their origin remains a hypothesis to be tested.

Research reported in this publication was supported by grants from the National Institute of Mental Health of the National Institutes of Health under award number MH081842-02 and the National Eye Institute, also of the NIH, under award number EY018168, and the Forsyth Institute, under award number 5T32DE007327-09.

Additional funders were the Leila Y. Mathers Charitable Foundation and the U.S. Army Medical Research and Materiel Command (USAMRMC, award W81XWH-10-2-0058).

Blackiston, B. J. and Levin, M. (2013). Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. J. Exp. Biol. 216, 1031-1040.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Alex Reid | Newswise
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>