Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earning its stripes

24.03.2011
Zebrafish model of human melanoma reveals new cancer gene

Looking at the dark stripes on the tiny zebrafish you might not expect that they hold a potentially important clue for discovering a treatment for the deadly skin disease melanoma.

Yet melanocytes, the same cells that are are responsible for the pigmentation of zebrafish stripes and for human skin color, are also where melanoma originates. Craig Ceol, PhD, assistant professor of molecular medicine at the University of Massachusetts Medical School, and collaborators at several institutions, used zebrafish to identify a new gene responsible for promoting melanoma. In a paper featured on the cover of the March 24 issue of Nature, Dr. Ceol and colleagues describe the melanoma-promoting gene SETDB1.

"We've known for some time that there are a number of genes that are responsible for the promotion and growth of melanoma," said Ceol, who completed the research while a postdoctoral fellow in the lab of Howard Hughes Medical Institute investigator Leonard Zon, MD, at Children's Hospital Boston. "With existing methods, it had been difficult to identify what those genes are. By developing the new approach described in this paper, we were able to isolate SETDB1 as one of those genes."

Cases of melanoma, an aggressive form of skin cancer, have been on the rise in the United States: in 2009 alone, 68,000 new cases were diagnosed and 8,700 people died of the disease. Though it accounts for less than 5 percent of all skin cancers, it is responsible for the majority of deaths from skin cancers and has a poor prognosis when diagnosed in its advanced stages. Early signs of melanoma include changes to the shape or color of existing moles or the appearance of a new lump anywhere on the skin.

Approximately 60 percent of human melanoma cases are caused by a mutation in the BRAF gene that drives proliferation of melanocytes, the cells responsible for skin pigmentation. Because the BRAF mutation is also found in benign moles, scientists hypothesized that the single mutation alone wasn't sufficient enough to cause melanoma. Ceol and colleagues set out to locate other genes implicated in this disease by focusing on areas of the genome that were overrepresented in melanoma cells, hypothesizing that there were genes in these regions that enabled cells to grow unchecked, leading to cancerous tumors. To evaluate genes from an overrepresented region of chromosome 1, Ceol created a technique called MiniCoopR to deliver the test genes, one-by-one, to transgenic zebrafish models with the melanoma-causing BRAF mutation. These fish also lacked the tumor suppressing gene p53.

"The MiniCoopR technique allows us to build melanocytes with whatever genes we want," said Ceol. "With it, we can test individual genes by placing them in the melanocytes and observing how those genes affect melanoma growth."

Painstakingly analyzing more than 2,100 tumors from more than 3,000 zebrafish, researchers found that in fish with the SETDB1 gene, melanoma not only appeared earlier, but grew faster and invaded more deeply into the neighboring muscle and spinal tissue. With this new information, researchers screened 100 human melanomas for the SETDB1 gene. In 70 percent of the sample tumors, SETDB1 was present at high levels, indicating that SETDB1 may be involved in the formation of a majority of human melanomas."

Further analysis showed that SETDB1 produces an enzyme that turns other genes on or off and is overrepresented in other forms of cancer, such as ovarian, breast and liver cancer. "It's clear that SETDB1 is up-regulated and that it's altering the activity levels of other genes," said Ceol. "Because SETDB1 regulates several genes, we still don't know which of its targets promote melanoma."

An abnormally high level of the SETDB1 enzyme may provide clinicians a means of identifying melanoma before patients experience symptoms. It may also provide an enticing target for pharmaceutical intervention. "Enzymes like SETDB1 are particularly attractive as drug targets because they are so amenable to inhibition by small molecules, which could potentially block the cancer causing activity," said Ceol.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $255 million in research funding annually, 80 percent of which comes from federal funding sources. The work of UMMS researcher Craig Mello, PhD, an investigator of the prestigious Howard Hughes Medical Institute (HHMI), and his colleague Andrew Fire, PhD, then of the Carnegie Institution of Washington, toward the discovery of RNA interference was awarded the 2006 Nobel Prize in Medicine and has spawned a new and promising field of research, the global impact of which may prove astounding. UMMS is the academic partner of UMass Memorial Health Care, the largest health care provider in Central Massachusetts.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

Further reports about: BRAF Earning Medical Wellness MiniCoopR Nobel Prize SETDB1 cancerous tumor skin cancer

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>