Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drexel Engineers Refine "Diving Board" Sensors to Streamline DNA Detection

31.07.2012
A tiny vibrating cantilever sensor could soon help doctors and field clinicians quickly detect harmful toxins, bacteria and even indicators of certain types of cancer from small samples of blood or urine.

Researchers from Drexel University are in the process of refining a sensor technology that they developed to measure samples at the cellular level into an accurate method for quickly detecting traces of DNA in liquid samples.

According to lead researcher Dr. Raj Mutharasan, a professor in Drexel’s College of Engineering, the group’s unique application of lead zirconate titanate (PZT) to current piezoelectric-excited cantilever sensor technology has created a way to conduct more sensitive and timely tests for DNA. This DNA test will allow for quick identification of harmful cells and bacteria.

“I equate this new technology to authorities trying to catch a criminal using latent fingerprints rather than a mug shot,” Mutharasan said. “It is more precise, selective and sensitive. With the PZT sensor we can potentially detect DNA derived from a much smaller number of pathogens and in a much shorter period of time than current methods.”

Cantilever Sensor Uses Electric Current for More Sensitive Measurements

Cantilever sensor technology, which has been around for a little over a decade, detects its minute targets using a method that is relatable to a springboard bouncing with the movements of a diver. The “board” –or cantilever in this application– vibrates at a higher frequency when the diver jumps off and his or her mass is removed. Conversely, the vibration frequency of a cantilever would decrease when weight is added to it. Measuring the difference in frequency of mass-free versus mass-loaded vibrations allow researchers to detect cells or, in this case, DNA, in samples.

Mutharasan and his group combined the PZT material to the cantilever in an innovative design, which allows researchers to initiate the “springboard” effect by applying an electric current. This is an upgrade over the classical cantilever method which requires an external stimulus –a flick of the diving board– to set the system into motion.

Because PZT sensors are completely controllable, Mutharasan’s group has discovered high-order vibration modes in certain designs that are sensitive to very small mass changes, on the order of one-billionth of a microgram, in liquid samples.

“Such high sensitivity enables us to measure biological molecules at a million-fold more sensitive than what is currently feasible,” Mutharasan said

A Second Advantage: Rapid Room-Temperature Replication of DNA

The PZT cantilever device is dually useful because it speeds up the process of replicating DNA in a sample. Replication is a necessary step in the testing process in order to improve the quality of the sample and positively identify the bacteria or cell of its origin, much like growing bacterial culture. Muthrasan’s research group will conduct simultaneous amplification and detection of DNA that is expected to be carried out at room temperature and in a short time frame.

Typical replication can be time-consuming because the sample needs to be heated in order to begin the process. The advantage of the cantilever sensor is that double-stranded DNA can be unwound by vibrating the sensor at the proper frequency. This procedure essential step for replication can cut a typical detection process, which could take several hours, down to less than an hour.

The National Science Foundation recently awarded the team a grant to continue research into simultaneous DNA replication and detection using these piezoelectric vibrations. The key discovery that Mutharasan’s team is building upon is its observation that DNA can be “melted” –a term describing the process of unwinding a DNA strand for replication– by application of mechanical energy to sensor surface via PZT.

With the PZT sensor’s unique ability to test samples in liquids and at room temperature, Mutharasan can foresee applications in detecting food and water contamination, as well as use in the medical field. In early testing the PZT sensor has successfully detected DNA indicators for prostate cancer in urine samples, toxin-producing genes in pathogenic E. coli and an identifying gene of malaria-causing Plasmodium falciparum in patient blood samples. The technology is still likely to be three-to-five years from becoming commercially available for medical and environmental uses, according to Mutharasan.

News media contact:
Britt Faulstick, news officer, Office of University Communications,
215-895-2617 (office), 215-796-5161 (cell), britt.faulstick@drexel.edu

Britt Faulstick | Newswise Science News
Further information:
http://www.drexel.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>