Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease knowledge may advance faster with CRISPR gene probing tool

08.03.2013
New technology can turn off genes more precisely, UCSF researchers say

Scientists at UC San Francisco have found a more precise way to turn off genes, a finding that will speed research discoveries and biotech advances and may eventually prove useful in reprogramming cells to regenerate organs and tissues.

The strategy borrows from the molecular toolbox of bacteria, using a protein employed by microbes to fight off viruses, according to the researchers, who describe the technique in the current issue of Cell.

Turning off genes is a major goal of treatments that target cancer and other diseases. In addition, the ability to turn genes off to learn more about how cells work is a key to unlocking the mysteries of biochemical pathways and interactions that drive normal development as well as disease progression.

"We've spent energy and effort to map the human genome, but we don't yet understand how the genetic blueprint leads to a human being, and how we can manipulate the genome to better understand and treat disease," said Wendell Lim, PhD, a senior author of the study. Lim is director of the UCSF Center for Systems and Synthetic Biology, a Howard Hughes Medical Investigator and professor of cellular and molecular pharmacology.

The new technology developed by the team of UCSF and UC Berkeley researchers is called CRISPR interference – not to be confused with RNA interference, an already popular strategy for turning off protein production.

"CRISPR interference is a simple approach for selectively perturbing gene expression on a genome-wide scale," said Lei Stanley Qi, PhD, a UCSF Systems Biology Fellow who was the lead author of the Cell study. "This technology is an elegant way to search for any short DNA sequence in the genome, and to then control the expression of the gene where that sequence is located."

The technique will allow researchers to more easily and accurately trace patterns of gene activation and biochemical chains of events that take place within cells, Qi said, and will help scientists identify key proteins that normally control these events and that may go awry in disease.

Unlike conventional RNA interference techniques, CRISPR interference allows any number of individual genes to be silenced at the same time, Qi said. In addition, it acts more crisply, if you will, by not turning off untargeted genes the way RNA interference techniques do.

Gene switching by RNA interference was identified more than a decade ago, launching a new research field that has spawned a Nobel Prize and billion-dollar biotech firms. In January, the U.S. Food and Drug Administration announced its first approval of an injectable disease therapy based on a similar interference strategy, a drug to treat a rare form of high cholesterol.

RNA interference blocks the messenger RNA that drives protein protection based on the blueprint contained within a gene's DNA sequence. By preventing protein production, RNA interference may be used to get around the problem of difficult-to-target proteins, a frequent challenge in drug development.

But CRISPR interference acts one step earlier in the cell's protein manufacturing process. "The horse has already left the barn with RNA interference, in the sense that the RNA message already has been transcribed from DNA," said Jonathan Weissman, PhD, a Howard Hughes Medical Investigator and professor of cellular and molecular pharmacology, who is another senior author on the work. "With CRISPR interference, we can prevent the message from being written."

CRISPR – an acronym for "clustered regularly interspaced short palindromic repeats" – is a system that bacteria use to defend themselves against viruses. CRISPR acts like a vaccine, incorporating bits of genes from viruses. Bacteria can reference this library of virus genes to recognize and attack viral invaders.

Qi and colleagues used a protein from this system, called Cas9, as a chassis into which they can insert any specific RNA partner molecule. The selected RNA serves as an adaptor that determines the target anywhere within the genome. "Targeting the machinery to new sites is extremely flexible and quick," Qi said.

The research team was able to get the system to work in mammalian cells as well as bacterial cells, and is working to improve its efficiency in mammalian cells, including human cells. The team aims to couple the Cas9 chassis to an enzyme that will enable the technology to turn genes on as well as off.

Such a versatile tool could prove valuable in efforts to reprogram cells for regenerative medicine. Lim's own lab is working on reprogramming immune cells to treat cancer.

"The idea is to reprogram cells to do the things we want them to do," Lim said. "We are still unlocking the secrets of the genome to harness the power of cellular reprogramming."

Additional UCSF co-authors of the February 28 Cell study are postdoctoral fellows Matthew Larson, PhD, and Luke Gilbert, PhD. UC Berkeley co-authors are Adam Arkin, PhD, professor of bioengineering; and Jennifer Doudna, PhD, Howard Hughes Medical Investigator and professor of biochemistry. All the study authors are members of QB3, the California Institute for Quantitative Biosciences.

The research was funded by the National Institutes of Health, the Howard Hughes Medical Institute and the National Science Foundation.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>