Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in amber reveals ancient biology of termites

18.05.2009
The analysis of a termite entombed for 100 million years in an ancient piece of amber has revealed the oldest example of "mutualism" ever discovered between an animal and microorganism, and also shows the unusual biology that helped make this one of the most successful, although frequently despised insect groups in the world.

The findings were made by George Poinar, an Oregon State University researcher and international expert on life forms found in amber. It was just published in Parasites and Vectors, a professional journal.

This particular termite was probably flying around while mating in a wet, humid tropical forest in what is now Myanmar during the Early Cretaceous period – the age of the dinosaurs. It may have been attacked by a bird or somehow torn open, and then it dropped into the sticky, oozing tree sap that would later become amber, providing an opportunity for the biology of this ancient insect to be revealed in a way that would otherwise have been impossible.

Out of its wounded abdomen spilled a range of protozoa, which even then were providing a key function for the termite – they helped it to digest wood. Between animals and microorganisms, this is the earliest example ever discovered of "mutualism," which is one type of symbiotic relationship in which two species help each other.

"Termites live on cellulose, mostly from the dead wood they chew, but they depend on protozoa in their gut to provide the enzymes that can digest the wood," Poinar said. "These protozoa would die outside of the termite, and the termite would starve if it didn't have the protozoa to aid in digestion. In this case they depend on each other for survival."

Even more primitive termites may have fed on a range of things they could digest themselves, Poinar said, but eventually they acquired protozoa that dramatically increased their ability to digest cellulose, and through evolutionary processes they came to depend on it.

Today, modern termites are one of the world's most pervasive and successful insect groups, with about 2,300 known species, mostly in tropical settings, busily at work chewing wood or other plant fiber that protozoa help to digest. They have important ecological roles, helping to create habitat, build soil fertility, recycle nutrients and serve as food for many predators. As a social species similar to ants, some colonies can have 20 million individual insects. And they also cause massive amounts of damage every year to wood structures in much of the world.

Their dependence on these protozoa is now well understood, and the process isn't always pretty.

Somewhere on the evolutionary scale the termites began producing a liquid that contained protozoa that they would excrete. The termite offspring in turn consume the feces and thereby gain the protozoa in their digestive systems.

It took time for all of this to get worked out, the study indicated. The successful establishment of protozoa in the termites required them to withstand the chemical and physical conditions inside the alimentary tract, use the gut contents as a food source, cause no damage to the host and be carried through successive stages and generations.

But by the different species each specializing at what they do best – the termite eats, the protozoa digests – the two groups have both had extraordinary evolutionary success.

"The relationship between termites and protozoa is very close and has been stabilized now for a very long time because of its obvious value," Poinar said. "It's exciting to understand that this classic example of mutualism has been going on now for at least 100 million years."

As well as outlining this age-old example of mutualism, the new study revealed 10 new fossil flagellate species of protozoa, a new species of termite, a new genus of fossil amoeba and 14 additional trophic and encysted protist stages.

Poinar for many years has studied life forms and other material found trapped in amber. As a semi-precious stone that first begins to form as sap oozing from a tree, amber has the unique ability to trap very small animals or other materials and – as a natural embalming agent – display them in nearly perfect, three-dimensional form millions of years later. This phenomenon has been invaluable in scientific and ecological research, and allows researchers to characterize the biology of ecosystems that existed millions of years ago.

The amber that contained the termite used in this study came from a mine first excavated in 2001 in the Hukawng Valley in Myanmar, in a formation that was between 97 and 110 million years old.

George Poinar | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>