Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device for identifying aggressive breast cancers

29.09.2010
A new disposable device based on advances in microfluidics may help identify advanced breast cancer patients who are candidates for therapy with the drug trastuzumab (Herceptin). The device is described in the American Institute of Physics' journal Biomicrofluidics.

Aggressive breast cancers with poor prognosis typically have abnormal levels of the protein HER2 (the tyrosine kinase human epidermal growth factor receptor 2). The new elastomeric, rubber-like device is designed to efficiently capture cancer cells overexpressing HER2 in circulating blood.

Finding a way to identify these cells is medically relevant because HER2 positive patients with early breast cancer have been found to significantly benefit from treatment with Herceptin or trastuzumab, the humanized monoclonal antibody against HER2, which can lower recurrence risk by about half. Given the cost ($50,000 - $65,000 per year in the United States) and possible side effects of Herceptin therapy, establishing HER2 status is crucial.

Current methodologies for determining HER2 status include immunohistochemistry and fluorescence in situ hybridization (FISH), both of which require biopsies. But biopsy-based testing may lead to ineffective treatment choices because in about 20% of breast cancers, the HER2 status of the primary tumor may differ from that of a metastatic tumor. This fact has made the non-invasive alternative of profiling circulating tumor cells a long-sought but elusive goal. Isolating circulating tumor cells, which are present at ratios as low as 1 to 10 per billion blood cells, is extremely challenging.

Recently, interest in microfluidic devices for capturing circulating tumor cells (CTCs) has intensified because of their greatly improved capabilities. A microfabricated device developed by researchers at the Massachusetts General Hospital and designed to bind to cells of epithelial origins (most cancers originate from epithelial tissues) circulating in the blood demonstrated near-perfect ability to isolate circulating tumor cells across a range of cancers.

In a study supported by the National Health and Medical Research Council Australia, Benjamin Thierry and colleagues at the Ian Wark Research Institute at the University of South Australia developed a plastic-based disposable microfluidic device offering several improvements for capturing circulating tumor cells. The device is designed to take advantage of the features of an organic silicone found in contact lenses and shampoos called polydimethylsiloxane (PDMS), which is compatible with soft molding techniques, transparent, and permeable to gasses.

The device is significantly easier and cheaper to make than the prior microfabricated one. The major challenge associated with PDMS use in biodiagnostic applications is its lack of chemical reactivity. The team used a novel plasma-based polymerization process to overcome that problem. The process creates a durable polymeric layer on the device's surface containing a high number of reactive molecules, which can readily be used to attach proteins able to capture cancer cells but not normal blood cells.

With a commonly used breast cancer cell line (SK-BR-3) as a model for cells overexpressing HER2, Dr. Thierry's device demonstrated an ~80% immuno-capture efficacy of HER positive cells from full blood in model and validation studies.

Thierry concluded, "Microfluidic-based devices offer a unique opportunity to efficiently isolate CTCs from patient's blood, thereby opening a window on the pathophysiology of cancer and its progression. We hope that our device will provide a fast, reliable and affordable methodology to establish HER2 status for breast cancer patients presenting metastases, thereby enabling the selection of more potent therapy based on trastuzumab. We are aiming to achieve clinical validation in the coming months and, with the support of a fellowship from the Prostate Cancer Foundation of Australia, to extend the study to the detection of aggressive forms of prostate cancer."

The article, "Herceptin-Functionalized Microfluidic PDMS Devices for the Capture of HER2 Positive Circulating Breast Cancer Cells Benjamin Thierry, Mahaveer Kurkuri, Jun Yan Shi, Lwin Ei Mon Phyo Lwin and Dennis Palms (University of South Australia) appears in the journal Biomicrofluidics.

ABOUT Biomicrofluidics

Biomicrofluidics is an online open-access journal published by the American Institute of Physics to rapidly disseminate research in elucidating fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>