Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting new proteins in behaving mice

07.11.2017

By using innovative labeling methods, Max Planck researchers develop a technique to measure newly synthesized proteins in the active mouse brain.

The complexity of living things is driven, in large part, by the huge diversity of cell types. Since all cells of an organism share the same genes, the diversity of cells must come from the particular proteins that are expressed. Cells in the brain are generally divided into neurons and glia. Within these two categories, however, lies a large diversity of cell types that we are only beginning to discover.


A mouse expressing a mutant-MetRS is fed a non-canonical amino acid that gets incorporated into newly synthesized proteins in specific cells, which can be tagged for visualization or identification.

Max Planck Institute for Brain Research

The diversity of cell types in brain and other tissues has recently been expanded by new techniques, like RNA-sequencing, that identify and measure the mRNAs present in a cell (“the transcriptome”). Although mRNAs are the template for proteins, the transcriptome is a poor proxy for proteins that a cell actually makes (“the proteome”). Alvarez-Castelao et al. now developed new methods to detect real-time changes in the proteome. They report their findings in the latest edition of Nature Biotechnology.

Building on prior technology, developed by the Schuman Lab and collaborators David Tirrell from Caltech and Daniela Dieterich (Magdeburg University), Beatriz Alvarez-Castelao and colleagues took advantage of a protein “metabolic” labeling system in which proteins during synthesis are “tagged” with a modified building block (amino acid), which is, under normal conditions, not present in these cells.

In order to label proteins in a particular cell type exclusively, the research team used a mutant methionyl tRNA synthetase (MetRS) that recognizes the modified amino acid. They then created a mouse line in which the MetRS can be expressed in specific cell types. When the non-canonical amino acid is administered to the mutant MetRS mice via the drinking water, only proteins in cells expressing the mutant metRS are labeled.

The proteins labeled in cells can be visualized and recognized with antibodies or can be extracted and identified using mass spectrometry. Alvarez-Castelao: “We used the technique to identify two different sets of brain proteins, those present in excitatory neurons in the hippocampus, a brain structure important for animal navigation and learning and memory, and inhibitory neurons in the cerebellum, a structure involved in motor behavior.”.

A particularly striking feature of this technology is that one can detect directly changes in brain proteins in response to a modified environment. Mice that were raised in an enriched sensory environment with a labyrinth, running wheel, and toys of varied textures showed significant changes in the proteome in the hippocampus, particularly in proteins that work at neuronal synapses. Schuman:

“We think that, by combining this mouse with other “disease” mouse models, this method can be used to discover the proteins in particular cell-types and how proteomes change during brain development, learning, memory and disease.”.

Publication: Alvarez-Castelao, B., Schanzenbächer, C.T., Hanus,C., Glock, C., tom Dieck, S., Dörrbaum, A.R., Bartnik, I., Nassim-Assir, B., Ciirdaeva, E., Mueller, A., Dieterich, D., Tirrell, D.A., Langer, J.D. and Schuman, E.M. (2017). Cell-type-specific metabolic labeling of nascent proteomes in vivo Nature Biotechnology advanced online publication.

Weitere Informationen:

https://www.nature.com/articles/nbt.4016

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung
Further information:
http://www.brain.mpg.de/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>