Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desires of Microscopic Shrimp Illuminate Evolutionary Theory

05.01.2015

A nighttime light display on a coral reef in the Florida Keys sparked a study that provides novel insight into the factors that drive the evolution of new species.

University of California, Santa Barbara, PhD student Emily Ellis and her colleagues in the laboratory of Dr. Todd Oakley are interested in the evolution of complex traits, particularly those related to vision and visual signaling. One such trait brought them on a sampling trip to the Keys: bioluminescence. In particular, the bioluminescence produced by a little-studied microscopic crustacean, the ostracod.

“We were on this new hunt to find this bioluminescence that we had heard so much about from collaborators, but never seen with our own eyes,” Ellis remembers, “and all of a sudden the whole reef just lit up, there was just light everywhere. It was just like a concert.”

She knew at that moment that she had stumbled upon the subject of her PhD research. “I’ve always been interested in speciation and how species form, but this is a whole different mechanism, that light can influence speciation,” Ellis says. “I thought it was just fabulous.”

An underlying question for evolutionary biologists is, why are there so many species? And particularly, why do some lineages have greater species diversity than others? Ellis points out a clear example: the incredible number of species of insects, versus the relatively small number of species of mammals.

One popular theory to explain this difference is that lineages that have been around longer have more time to diverge. And yet, there are many cases where two groups have been around for equal lengths of time, but one group has more overall species.

“So we want to know is, what is it about one group that gives them a unique advantage to invade new niches?” asks Ellis.

Hence the idea to study specific traits, and how they arise and are selected. Evolutionary theory holds that traits that play a role in mating and reproductive success, undergoing sexual selection, drive species diversification—a concept often likened to an “arms race.” In other words, if something happens to males that creates diversification, the females have to follow.

“Otherwise they wouldn’t be able to recognize each other,” Ellis explains.

But this idea remains a hypothesis that scientists are still testing, and a source of active debate within the field of evolutionary biology. And that’s where bioluminescent ostracods come in.

These millimeter-sized, shrimp-like animals can be found all across the globe, in both marine and freshwater environments. They’ve even been found living in leaf litter in tropical rainforests. There are an estimated 20,000 species of ostracods, but only about 200 that produce bioluminescence.

There are two separate instances of bioluminescence in ostracods. One type is used as a defense mechanism, in which threatened ostracods emit a cloud of bioluminescence to distract predators. Interestingly, these animals don’t have eyes, so it is unlikely that they use their bioluminescence to communicate among themselves.

The second instance is what Ellis and her colleagues traveled to the Keys to see: bioluminescence used as a mating display. There are around 60 species of ostracods with this type of bioluminescence, but they are only found in the Caribbean.

By comparing the numbers of species of ostracods that have evolved bioluminescence for either mating displays or defensive purposes to related species without bioluminescence, Ellis realized she could gain very useful evidence to support or refute the theory of sexual selection as a driver of species diversification. With this technique, known as sister-clade comparision, evolutionary scientists look at groups of species that have common ancestry and age, known as sister clades, comparing the number of species with a particular behavior to the number without.

“What’s really great about our study is it’s actually simple,” Ellis says. “We’re attempting to answer a really complex problem with simple methods.”

As it turns out, there is only one evolutionary origin for mating-display bioluminescence in ostracods, which means there is not enough statistical strength to investigate the sexual selection question with just ostracods. So Ellis decided to broaden her study to include all bioluminescent marine animals that have related species that use the trait for both defensive purposes and mating displays.

She limited her investigation to animals whose phylogenies (or historical lineages) have already been published. She found 8 useful phylogenies for bioluminescent mating displays and 12 for defensive bioluminescence, across a broad group of marine animals including octopuses, crustaceans (including the ostracods), fish, and a worm.

The results provide clear support for the sexual selection theory. “We definitely documented a strong pattern of increased diversification with the origin of bioluminescent courtship displays, and there was absolutely no correlation with bioluminescence used for defense,” Ellis says.

She is quick to point out that for now her research is just documenting a pattern that provides better insight into the process of species diversification, not implying actual causation.

However, this is just the tip of the iceberg of what it might be possible to learn about evolution from the ostracod. Studies have shown that each species that uses bioluminescence for mating displays has a unique signaling pattern. Ellis looks forward to shedding more light on these fascinating creatures with her ongoing research.

Ellis presented her research at the 2015 annual meeting of the Society for Integrative and Comparative Biology in West Palm Beach, Florida.

Contact Information
Brett Burk
Executive Director
bburk@BurkInc.com
Phone: 703-790-1745
Mobile: 703-981-7708

Brett Burk | newswise

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>