Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cut Out the (Estrogen) Middleman

10.12.2009
Estrogen seems to act like a middleman in its positive effect on the brain, raising the possibility that future drugs may bypass the carcinogenic hormone altogether while reaping its benefits.

A split-personality chemical, estrogen is thought to protect neural circuits and boost learning and memory, while at the same time increasing cancer risk when taken in high doses.

In a study published online today in the Proceedings of the National Academy of Sciences (PNAS), neuroscientists at USC and the Western University of Health Sciences show that estrogen sometimes acts through another chemical.

Their experiments on mice verified that the hormone stimulates parts of the brain dedicated to learning and memory.

“We show very clearly that it does activate the same machinery that is activated during learning and memory,” said Michel Baudry, professor of neurobiology at the USC College of Letters, Arts and Sciences.

But the researchers also found that estrogen acts through calpain, a protein considered crucial to learning and memory since a seminal paper in 1984 by Baudry and Gary Lynch of the University of California, Irvine on the biochemistry of memory.

Baudry is senior co-author on the PNAS study, which implies that the hormonal description of estrogen needs revisiting.

Estrogen acting through calpain does not work as a slowly diffusing hormone, Baudry said, but as a neurotransmitter with a more powerful and nearly immediate effect on the brain.

He compared estrogen to adrenalin, a substance that acts like a hormone in most of the body but as a neurotransmitter in the brain.

“It’s not a hormonal effect. It’s a synaptic modulator. It completely changes the way we look at estrogen in the brain,” Baudry said.

That change may lead to better drugs against Alzheimer’s and other neurodegenerative diseases, according to USC graduate student and lead author Sohila Zadran.

“Estrogen is critically involved in learning and memory,” she said, and the PNAS study shows that its effects “critically involve calpain.”

In the future, drug developers may choose to target calpain directly, possibly avoiding the risks associated with hormone therapy.

Such a strategy would not have been possible if Baudry’s group had not clarified estrogen’s mechanism of action.

“If you don’t understand the mechanism, it really makes it difficult to go after a problem,” Zadran said.

In addition to Zadran and Baudry, the research team consisted of senior co-author Richard Thompson, Keck Professor of Psychology at USC College; USC graduate students Homera Zadran, Young Kim and Michael Foy; and postdoctoral fellow Qingyu Qin and professor Xiaoning Bi of the Western University of Health Sciences.

Funding for this research came from the National Institute of Aging and the National Institute of Neurological Disorders and Stroke.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>