Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crocodiles Trump T.Rex as Heavyweight Bite-Force Champions

02.04.2012
In PLoS One, Stony Brook researcher says finding adds insight to evolution of the reptile hunters

Paul M. Gignac, Ph.D., Instructor of Research, Department of Anatomical Sciences, Stony Brook University School of Medicine, and colleagues at Florida State University and in California and Australia, found in a study of all 23 living crocodilian species that crocodiles can kill with the strongest bite force measured for any living animal.

The study also revealed that the bite forces of the largest extinct crocodilians exceeded 23,000 pounds, a force two-times greater than the mighty Tyrannosaurus rex. Their data, reported online in PLoS One, contributes to the understanding of performance in animals from the past and provides unprecedented insight into how evolution has shaped that performance.

In “Insights into the Ecology and Evolutionary Success of Crocodilians Revealed through Bite-Force and Tooth-Pressure Experimentation,” the researchers detail their examination of the bite force and tooth pressure of every species of alligator, crocodile, caiman, and gharial. Led by Project Director Gregory Erickson, Ph.D., Professor of Biological Science at Florida State University, the study took more than a decade to complete and required a diverse team of croc handlers and scientists.

“Crocodiles and alligators are the largest, most successful reptile hunters alive today, and our research illustrates one of the key ways they have maintained that crown,” says Dr. Gignac.

The team roped 83 adult alligators and crocodiles and placed a force meter between their back teeth and recorded the bite force. They found that gators and crocs have pound-for-pound comparable maximal bite forces, despite different snouts and teeth. Contrary to previous evolutionary thinking, they determined that bite force was correlated with body size but showed surprisingly little correlation with tooth form, diet, jaw shape, or jaw strength.

Dr. Gignac emphasizes that the study results suggest that once crocodilians evolved their remarkable capacity for force-generation, further adaptive modifications involved changes in body size and the dentition to modify forces and pressures for different diets.

The findings are unique, to the point that the team has been contacted by editors of the “Guinness Book of World Records” inquiring about the data.

Among living crocodilians, the bite-force champion is a 17-foot saltwater croc, with a force measured at 3,700 pounds.
“This kind of bite is like being pinned beneath the entire roster of the New York Knicks,” says Dr. Gignac, illustrating the tremendous force displayed by the living creatures. “But with bone-crushing teeth.”

The research was funded by the National Geographic Society and the Florida State University College of Arts and Sciences.

The Department of Anatomical Sciences is one of 25 departments within the Stony Brook University School of Medicine. The department includes graduate and doctoral programs in Anatomical Sciences. The faculty consists of prominent and internationally recognized researchers in the fields of Anthropology, Vertebrate Paleontology and Systematics, and Functional Morphology.

Greg Filiano | Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Anatomical Bite-Force Champions Heavyweight PLoS One Science TV body size crocodiles

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>