Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inner clock of polar plankton organisms as a focal research topic of a new virtual Institute

04.07.2012
Function and significance of the biological clocks in polar planktonic organisms are the focus of the virtual Helmholtz Institute entitled PolarTime starting July 1st, 2012. It is one of eleven new virtual institutes funded by the Helmholtz Association.

PolarTime, coordinated by the Alfred Wegener Institute for Polar and Marine Research, will be supported for up to five years with approximately three million euros from the impulse and network fund of the Helmholtz Association.

The anthropogenic influence on the climate system is particularly pronounced in Polar Regions. Examples of environmental changes in the Arctic and Antarctic include the receding of sea ice and ocean warming. How do marine organisms react to these changes in the environment given that their vital processes, such as reproduction cycles and seasonable food availability, have been synchronised with the environment over millions of years? To be able to answer these questions, researchers in the virtual Helmholtz Institute PolarTime are taking a very close look at Antarctic krill (scientific name: Euphausia superba). It serves as a model organism for a polar plankton species which has adapted to the extreme conditions.

Krill plays a key role in the foodwebs of the South Ocean. During the course of evolution krill has developed a large number of biological rhythms that are closely connected to large seasonal changes in its environment. Almost all organisms, from protozoan to humans have adapted to the periodic change from day to night by developing an inner biological clock. This clock permits the synchronisation of physiological and behavioural processes with the diurnal variability in environmental conditions. It can also determine the seasonal rhythms with surprising temporal precision. However, the inner clock must be reset from time to time. This happens thanks to so-called outer "timers“ such as the length of daylight (photoperiod).

A team around spokesmen Dr. Bettina Meyer from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association and Dr. Mathias Teschke from the Charité University Medicine Berlin will, in future, investigate the principles, interactions and evolution of endogenous biological rhythms and clocks in pelagic organisms of the Polar Regions using Antarctic krill as a model organism. Cooperation partners are the Carl von Ossietzky University of Oldenburg, the Helmholtz Centre for Environmental Research (UFZ) in Leipzig as well as the Italian University of Padua and the Australian Antarctic Institute in Hobart (Tasmania).

Research at the Alfred Wegener Institute will focus on physiology. “We are currently investigating, for example, the conditions under which genes and enzymes are active and how these are controlled by the inner clock“, says Meyer. Her colleague, Mathias Teschke, has already started investigating krill's inner clock during a research project funded by the German Research Foundation. “The studies on krill will provide a solid basis to investigate the inner clock and its mode of action of other key polar marine organisms which assume a central function in polar ecosystems“, explains Teschke.

Scientists of two working groups from the University of Oldenburg will use the knowledge gained on individual organisms to determine the population dynamics of key species and the response of population shifts on the Antarctic ecosystem. Evolutionary biologists around Prof. Dr. Gabriele Gerlach will investigate whether the krill populations in the East and West Antarctic sectors differ from each other, as climate fluctuations are considerably larger in the Western than in the Eastern sector. The working group of Prof. Dr. Bernd Blasius uses the physiological data to develop mathematical models in order to test the impact of different climate change scenarios on the inner clock and the associated vital functions of marine organisms.

“With the establishment of joint professorship for ‘Biological Processes and Biodiversity in Polar Regions’ we would like to ascertain a long-term cooperation with the University of Oldenburg“, says Prof. Dr. Karin Lochte, Director of the Alfred Wegener Institute. Furthermore, a joint working group “Marine Chronobiology“ is to be set up in which Teschke can contribute his expertise from the Berlin Charité. “In order to introduce the innovative research area of PolarTime into teaching theory, a ‘Chronobiology in Marine Environments’ summer school will be set up at the University of Oldenburg“, reports Prof. Dr. Babette Simon, President of the Carl von Ossietzky University. An exchange programme for master's and PhD students is also planned with the international cooperation partners as well as a circuit lecture on different areas of chronobiology.

The virtual Helmholtz Institute PolarTime - Biological timing in a changing marine environment: Clocks and rhythms in polar pelagic organisms

Coordination: Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association; spokes persons: PD Dr. Bettina Meyer, Dr. Mathias Teschke

Cooperation partners:

Carl von Ossietzky University of Oldenburg, Prof. Dr. Gabriele Gerlach, Prof. Dr. Bernd Blasius

Charité University Medicine Berlin: Prof. Dr. Achim Kramer, Dr. Mathias Teschke

Helmholtz Centre for Environmental Research (UFZ) in Leipzig: Prof. Dr. Volker Grimm, Dr. Karin Johst

Australian Antarctic Division: Dr. So Kawaguchi, Dr. Simon Jarman

University of Padua: Prof. Dr. Rudolfo Costa

General Information on the new virtual Helmholtz Institutes may be found on the website of the Helmholtz Association: http://www.helmholtz.de/en/news/press_and_news/

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de/en
http://www.helmholtz.de/en/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>