Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019

New technology lays groundwork for biosensors that improve disease diagnosis and monitoring

For the first time, researchers have used a chip-based sensor with an integrated laser to detect very low levels of a cancer protein biomarker in a urine sample. The new technology is more sensitive than other designs and could lead to non-invasive and inexpensive ways to detect molecules that indicate the presence or progression of a disease.


Pump light coupled to the device produced lasing in a microring resonator. The surface of the resonator holds probes (red anchor molecules on the ring) that capture the analytes of interest. The laser light in the ring extends into the fluid. When analytes of interest (blue triangles) attach to the capture probes, this is sensed by the field outside the microring laser, shifting the frequency of the laser emission. This shift can be very precisely measured permitting the detection of minute amounts of analytes flowing over the sensor in a "specific" manner (i.e., the pink particles do not bind to the capture layer and are therefore not detected). In the figure, the waveguide are green (real color produced by upconversion of the dopants that induce the laser emission) and a microfluidic channel can be seen in which different particles flow from left to right.

Credit: Rick Seubers, Optical Sciences group, University of Twente

"Current methods to measure biomarker levels are expensive and sophisticated, requiring biopsies and analysis in specialized laboratories," said research team leader Sonia M. Garcia-Blanco from the University of Twente in the Netherlands. "The new technology we developed paves the way to faster and ultra-sensitive detection of panels of biomarkers that will permit doctors to make timely decisions that improve personalized diagnosis and treatment of medical conditions including cancer."

In The Optical Society (OSA) journal Optics Letters, a multi-institutional group of researchers funded by the H2020 European project GLAM (Glass multiplexed biosensor), shows that the new sensor can perform label-free detection of S100A4, a protein associated with human tumor development, at levels that are clinically relevant.

"The biosensor could enable point-of-care devices that simultaneously screen for various diseases," said Garcia-Blanco. "Its operation is simple and does not require complicated sample treatments or sensor operation, making it an excellent candidate for clinical applications."

The researchers say that the sensor holds potential for non-biomedical applications, as well. For example, it can also be used to detect different types of gases or liquid mixtures.

Creating a high-sensitivity sensor

The new chip-based sensor detects the presence of specific molecules by illuminating the sample with light from an on-chip microdisk laser. When the light interacts with the biomarker of interest the color, or frequency, of this laser light shifts in a detectable way.

To perform detection in urine samples, the researchers had to figure out how to integrate a laser that could operate in a liquid environment. They turned to the photonic material aluminum oxide, because when doped with ytterbium ions it can be used to fabricate a laser that emits in a wavelength range outside the light absorption band of water while still enabling the precise detection of the biomarkers.

"Although sensors based on monitoring frequency shifts of lasers already exist, they often come in geometries that are not easily integrated on small, disposable photonic chips," said Garcia-Blanco. "Aluminum oxide can easily be fabricated monolithically on-chip and is compatible with standard electronic fabrication procedures. This means that the sensors can be produced on a large, industrial scale."

Using a microdisk laser rather than the non-lasing ring resonators used in other similar sensors opens the door to unprecedented sensitivity. The sensitivity comes from the fact that the lasing linewidth is much narrower than the resonances of passive ring resonators. Once other noise sources, such as thermal noise, are eliminated, this method will allow the detection of very small frequency shifts from biomarkers at very low concentrations.

Detecting minute biomarker concentrations

After developing and applying a surface treatment that captures the biomarkers of interest in complex liquids such as urine, the researchers tested the new sensor with synthetic urine containing known biomarker levels. They were able to detect S100A4 at concentrations as low as 300 picomolar.

"Detection in this concentration range shows the potential of the platform for label-free biosensing," said Garcia-Blanco. "Furthermore, the detection module can be potentially made very simple using the developed technology, bringing it a step closer to the final application outside of the laboratory."

The researchers are working to incorporate all the relevant optical sources and signal generation components onto the chip to make the device even simpler to operate. They also want to develop various coatings that could allow parallel detection of a large variety of biomarkers.

###

Paper: M. De Goede, L. Chang, J. Mu, M. Dijkstra, R. Obregón, E. Martínez, L. Padilla, F. Mitijans, S. M. Garcia-Blanco, "Al2O3:Yb3+ integrated microdisk laser label-free biosensor," Opt. Lett., 44, 24, 5937-5940 (2019).

DOI: https://doi.org/10.1364/OL.44.005937.

About Optics Letters Optics Letters offers rapid dissemination of new results in all areas of optical science with short, original, peer-reviewed communications. Optics Letters accepts papers that are noteworthy to a substantial part of the optics community. Published by The Optical Society and led by Editor-in-Chief Xi-Cheng Zhang, University of Rochester, USA, Optics Letters is available online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

mediarelations@osa.org

Media Contact

James Merrick
jmerrick@osa.org
202-416-1994

 @opticalsociety

http://www.osa.org 

James Merrick | EurekAlert!
Further information:
https://www.osa.org/en-us/about_osa/newsroom/news_releases/2019/chip-based_optical_sensor_detects_cancer_biomarker/
http://dx.doi.org/10.1364/OL.44.005937

Further reports about: Biomarkers OSA cancer biomarker new technology optical sensor sensitivity

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>