Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chickens 'One-Up' Humans in Ability to See Color

17.02.2010
Researchers at Washington University School of Medicine in St. Louis have peered deep into the eye of the chicken and found a masterpiece of biological design.

Scientists mapped five types of light receptors in the chicken's eye. They discovered the receptors were laid out in interwoven mosaics that maximized the chicken's ability to see many colors in any given part of the retina, the light-sensing structure at the back of the eye.

"Based on this analysis, birds have clearly one-upped us in several ways in terms of color vision," says Joseph C. Corbo, M.D., Ph.D., senior author and assistant professor of pathology and immunology and of genetics. "Color receptor organization in the chicken retina greatly exceeds that seen in most other retinas and certainly that in most mammalian retinas."

Corbo plans follow-up studies of how this organization is established. He says such insights could eventually help scientists seeking to use stem cells and other new techniques to treat the nearly 200 genetic disorders that can cause various forms of blindness.

Scientists published their results in the journal PLoS One.

Birds likely owe their superior color vision to not having spent a period of evolutionary history in the dark, according to Corbo. Birds, reptiles and mammals are all descended from a common ancestor, but during the age of the dinosaurs, most mammals became nocturnal for millions of years.

Vision comes from light-sensitive photoreceptor cells in the retina. Night-vision relies on receptors called rods, which flourished in the mammalian eye during the time of the dinosaurs. Daytime vision relies on different receptors, known as cones, that are less advantageous when an organism is most active at night.

Birds, now widely believed to be descendants of dinosaurs, never spent a similar period living mostly in darkness. As a result, birds have more types of cones than mammals.

"The human retina has cones sensitive to red, blue and green wavelengths," Corbo explains. "Avian retinas also have a cone that can detect violet wavelengths, including some ultraviolet, and a specialized receptor called a double cone that we believe helps them detect motion."

In addition, most avian cones have a specialized structure that Corbo compares to "cellular sunglasses": a lens-like drop of oil within the cone that is pigmented to filter out all but a particular range of light. Researchers used these drops to map the location of the different types of cones on the chicken retina. They found that the different types of cones were evenly distributed throughout the retina, but two cones of the same type were never located next to each other.

"This is the ideal way to uniformly sample the color space of your field of vision," Corbo says. "It appears to be a global pattern created from a simple localized rule: you can be next to other cones, but not next to the same kind of cone."

Corbo speculates that extra sensitivity to color may help birds in finding mates, which often involves colorful plumage, or when feeding on berries or other colorful fruit.

"Many of the inherited conditions that cause blindness in humans affect cones and rods, and it will be interesting to see if what we learn of the organization of the chicken's retina will help us better understand and repair such problems in the human eye," Corbo says.

Kram YA, Mantey S, Corbo JC. Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One, Feb. 1, 2010.

Funding from the National Eye Institute supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

| Newswise Science News
Further information:
http://news-info.wustl.edu/

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>