Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018

In future, inexpensive and bio-compatible main group metals could replace expensive and toxic transition metals during catalytic processes. Chemists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now demonstrated that imine hydrogenation is possible using calcium instead of precious metals. Catalytic conversion of imines to amines is an important process in producing fine chemicals, especially in the pharmaceutical industry. The results have now been published in the journal ‘Nature Catalysis’ (DOI: 0.1038/s41929-017-0006-0).

Platinum has been used for over two hundred years as a catalyst for inert materials. It is an excellent catalyst, as it can split molecules of hydrogen, oxygen and other gases into single atoms.


Today, for example, platinum is used as an oxidation catalyst in vehicles, for manufacturing nitric acid and for treating cancer. However, platinum has serious disadvantages. In terms of its molecular mass, this precious metal is almost twice as expensive as gold, there are only a few deposits on Earth, and platinum salts can be highly toxic as they can accumulate in DNA strands.

Researchers all over the world are therefore looking for cost-effective and safe alternatives to catalytic converters made of so-called transition metals that include palladium, rhodium and iridium as well as platinum.

Promising: Catalysis with calcium

Chemists at FAU have now come significantly closer to achieving this. In their experiments, they demonstrated that imine hydrogenation is also possible with calcium instead of precious metals using comparably low technical outlay and surprisingly low pressures of up to one bar.

Imines are organic carbon-nitrogen compounds that are converted to amines by catalytic adsorption of hydrogen atoms, a process that is important for the pharmaceutical industry in particular. ‘We were really surprised at how well imine hydrogenation works with calcium,’ says Prof. Dr. Sjoerd Harder, Chair of Inorganic and Organometallic Chemistry. ‘Calcium is obviously a much better catalyst than we had previously thought’.

Cost-effective, bio-compatible and atom-efficient

Like magnesium, calcium is one of the so-called alkaline earth metals. As these early main group metals are available all over the world and are easy to extract, they are very inexpensive and their price stays stable. In terms of its molecular mass, calcium is 5000 times cheaper than platinum and even 11000 times cheaper than rhodium.

And, in contrast to transition metals, calcium has a particularly high bio-compatibility. ‘Calcium is completely harmless,’ says Sjoerd Harder. ‘It can be found in many organisms, in humans, for example, in bones and teeth.’ In addition, the imine hydrogenation process with calcium catalysts that Harder describes is one hundred percent atom-efficient, as it does not generate any by-products.

Paradigm shift in organometallic chemistry

The researchers’ findings could result in a paradigm shift in organometallic catalysis. Sjoerd Harder and his departmental staff have dedicated themselves to researching the full application potential of alkaline earth metals in complex catalysis processes and successively replacing established transition metals in these processes.

The research findings have been published under the title ‘Imine hydrogenation with simple alkaline earth metal catalysts’ in the journal ‘Nature Catalysis’, which is part of the renowned ‘Nature’ group.

Further information:
Prof. Dr. Sjoerd Harder
Chair of Inorganic and Organometallic Chemistry
Phone: +49 9131 8527350
sjoerd.harder@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Life Sciences:

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht SERSitive: New substrates make it possible to routinely detect one molecule in a million
10.08.2018 | Institute of Physical Chemistry of the Polish Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>