Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerebral sensory development: genetic programming versus environmental stimuli

23.12.2013
Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

The part of the brain associated with the sense of touch – the somatosensory cerebral cortex – has attracted numerous studies aimed at determining the influence of extrinsic environmental and intrinsic genetic factors in sensory development. Understanding the role of these factors in sensory map formation and development may provide insights into the mechanisms behind other circuits in the central nervous system.


A model of the mechanisms underlying the initiation of barrel formation and eye-specific segregation. The birth of pups leads to the attenuation of 5-HT signalling, which results in the initiation of barrel formation in S1 (brown) and eye-speciic segregation of RGC axons in dLGN. /Red and green represent RGC axons derived from the ipsilateral and contralateral eyes, respectively. /Yellow represents regions containing both ipsilateral and contralateral RGC axons.

Now Hiroshi Kawasaki and colleagues at Kanazawa University, Tokyo University, Tokyo Institute of Technology and Kumamoto University in Japan have identified how sensory map development is regulated in mice pups at birth, and the molecular signalling responsible.

Rodents have a sensory map in the primary somatosensory cerebral cortex, characterized by cell clusters called barrels filled with patches of nerve fibre. Inputs from the part of the brain that link to the rodent’s whiskers terminate at these barrels. The barrel distribution pattern is the same as the distribution of the whiskers on the snout and forms soon after birth.

The researchers induced preterm birth in mice and quantitatively compared the degree of development of whisker-related barrel pattern formation with mice born after the full term of pregnancy. At set periods after conception, barrel formation was significantly more advanced in the mice born preterm. Further experiments ruled out the role of maternal hormones prior to birth and identified the critical effect of serotonin reductions during the days after birth.

“Interestingly, the regulatory mechanisms described here were also found to regulate eye-specific segregation in the visual system, raising the possibility that they are utilized in various brain regions,” the researchers suggest. They add that further investigation of the range of roles of serotonin and the underlying mechanisms will be interesting for future research.

Further information

Organization of Frontier Science and Innovation
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan
E-mail: fsojimu@adm.kanazawa-u.ac.jp
Website: http://www.o-fsi.kanazawa-u.ac.jp/en/about/
About Kanazawa University
As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.

Kanazawa University website: http://www.kanazawa-u.ac.jp/e/index.html

Associated links
•December issue of the Kanazawa University Research Bulletin
•Organization of Frontier Science and Innovation, Kanazawa University
Journal information
Tomohisa Toda1,2,3,4,5, Daigo Homma6, Hirofumi Tokuoka6, Itaru Hayakawa4, Yukihiko Sugimoto7, Hiroshi Ichinose6 and Hiroshi Kawasaki1,2,3,4*
Birth regulates the initiation of sensory map formation through serotonin signaling developmental Cell 27 (2013) 32-46
1. Department of Biophysical Genetics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
2. Brain/Liver Interface Medicine Research Center, Kanazawa University, Ishikawa 920-8640, Japan
3. Innovative Preventive Medicine Education and Research Center, Kanazawa University, Ishikawa 920-8640, Japan
4. Department of Molecular and Systems Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
5. Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
6. Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
7. Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

*corresponding author, e-mail address: yyoneda@p.kanazawa-u.ac.jp

Adarsh Sandhu | Research asia research news
Further information:
http://www.kanazawa-u.ac.jp/e/index.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle

23.07.2018 | Earth Sciences

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

VideoLinks
Science & Research
Overview of more VideoLinks >>>