Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular stress causes fatty liver disease in mice

09.12.2008
Study in mice shows direct link between disrupted protein folding and abnormal fat metabolism in the liver

A University of Iowa researcher and colleagues at the University of Michigan have discovered a direct link between disruption of a critical cellular housekeeping process and fatty liver disease, a condition that causes fat to accumulate in the liver.

The findings, published in the Dec. 9 issue of the journal Developmental Cell, might open new avenues for understanding and perhaps treating fatty liver disease, which is the most common form of liver disease in the Western world and may affect as many as one in three American adults. Although fatty liver itself does not necessarily cause illness, it is associated with serious conditions like diabetes, metabolic syndrome, cirrhosis of the liver and liver failure.

The study, led by Tom Rutkowski, Ph.D., assistant professor of anatomy and cell biology at the UI Roy J. and Lucille A. Carver College of Medicine, and Randal Kaufman, Ph.D., professor of biological chemistry and internal medicine at the University of Michigan Medical School, shows that disrupted protein folding causes fatty liver in mice. The finding is the first to demonstrate a direct link between this form of cellular stress and abnormal fat metabolism.

Protein folding, which occurs in a cellular compartment called the endoplasmic reticulum (ER), is a vital cellular process because proteins must be correctly folded into defined three-dimensional shapes in order to function. Unfolded or misfolded proteins are a sign of cellular stress and can cause serious problems -- misfolded proteins cause amyloid plaques found in Alzheimer's disease. Cells rely on a very sensitive system known as the unfolded protein response (UPR) to guard against the cellular stress caused by protein folding problems.

To investigate how cells adapt to stress, the researchers created mice that were missing one component of the UPR. Under normal conditions, mice with the genetic mutation looked and behaved normally. However, the mutated mice were much less able to cope with cellular stress caused by disrupted protein folding than wild-type mice. In addition, the team found that protein misfolding caused fatty liver in mice with the mutation.

"We did not set out to understand fatty liver disease," said Rutkowski, who was a postdoctoral researcher in Kaufman's University of Michigan lab when the study was done. "We were really trying to understand the basic biology of how cells respond to stress, and through our approach to that fundamental question we were able to identify a connection to a condition that is of enormous importance to human health.

"When we realized that our experiments to investigate protein folding abnormalities were producing fatty liver disease as a consequence, it tied in with previous circumstantial evidence suggesting that ER stress might be involved in the liver's role in fat metabolism," he added.

The researchers followed up on the result and found that mice also developed fatty liver if their ability to fold proteins in the ER was genetically impaired, even when the UPR was functionally intact. This result suggested that the UPR is able to protect the liver against ER stress to a certain degree, but that fatty liver will result when the stress is too severe.

Further analysis of the mice models identified some of the genes that connect prolonged ER stress with faulty fat metabolism in the liver. In particular, the team found that unresolved ER stress leads to persistent expression of a gene called CHOP and that leads to changes in expression of fat metabolism genes. Mice with no CHOP were partially protected from fatty liver.

The results suggest that it is not disruption of a specific protein that caused fatty liver, but rather anything that perturbs the ER's ability to fold proteins correctly that is important. If this finding holds true for fatty liver disease in humans, therapies aimed at improving protein folding in the ER, or inhibiting CHOP, could help treat the condition.

"Our study does prove that perturbing protein folding can lead to fatty liver," Rutkowski said. "The next step is to investigate whether real physiological stresses like chronic alcohol consumption, obesity and viral infection also lead to fatty liver disease through protein folding problems in the ER."

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>