Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Many Cells are Better than One

13.10.2011
Limited decision-making ability of individual cells is bolstered in masses

Researchers from Johns Hopkins have quantified the number of possible decisions that an individual cell can make after receiving a cue from its environment, and surprisingly, it’s only two.

The first-of-its-kind study combines live-cell experiments and math to convert the inner workings of the cell decision-making process into a universal mathematical language, allowing information processing in cells to be compared with the computing power of machines.

The research published on September 15 in Science also demonstrates why it’s advantageous for cells to cooperate to overcome their meager individual decision-making abilities by forming multicellular organisms.

“Each cell interprets a signal from the environment in a different way, but if many cells join together, forming a common response, the result can eliminate the differences in the signal interpretation while emphasizing the common response features,” says Andre Levchenko, Ph.D., associate professor of biomedical engineering and member of the Institute for Cell Engineering. “If a single blood vessel cell gets a signal to contract, it is meaningless since all the surrounding cells in the blood vessel need to get the message to narrow the blood vessel. Cell collaboration does wonders in terms of their ability to transfer information and convert it into decision-making.”

One bit of information represents two choices: yes or no, on or off, or one or zero in binary code, used by computer programmers. Two bits doubles the amount of choices to four and so on for each bit added.

To determine how many bits of information a cell has for each decision, the researchers had to measure a real biological decision in progress. They decided to look at a well-known cell stimulant, a protein called tumor necrosis factor (TNF), responsible for turning on the inflammation response in the body. When cells detect TNF on their surface, they transmit a message that sends a messenger protein into the nucleus to turn on inflammation genes.

The researchers administered different amounts of TNF to mouse cells in dishes, and then they determined whether the messenger went to the nucleus. They bound the messenger with a glowing tag; the more messenger present in the nucleus, the brighter the nucleus would appear under a microscope. The researchers used a computer program to quantify the brightness of the nucleus after the addition of TNF. From this, they calculated a single cell’s response to be 0.92 bits of information, allowing for two possible decisions.

“What we get from this information is that the cell can only reliably detect the presence of the signal or not, nothing more precise,” says Levchenko. “This was a little bit dissatisfying because we were hoping that the cells could recognize many more levels of the input and use that to make more decisions than just two.”

The researchers tested other scenarios to see if cells could respond in more ways. They looked at decision outputs other than inflammation, like development and cell survival. They also looked to see if the cell’s response to a certain stimulus changed over time, as well as explored whether receiving different input signals that led to the same outcome could boost decision-making potential. None of these different situations drove cells to show greater decision-making ability. Cells seem to have distinct limits to the amount of information they intake that confines the number of decisions they can make, says Levchenko.

Finally, the researchers investigated the idea that cells could collectively respond to input to make decisions together. They went back to quantifying the brightness of the nucleus in response to TNF, but this time they examined clusters of cells and compiled this data into their equation. They found that clusters of as few as 14 cells could produce 1.8 bits of information, corresponding to somewhere from 3 to 4 different potential decisions for the cluster.

The fact that combinations of cells can make more decisions suggests why being multicellular is such a good thing in the animal world and why cells can sometimes achieve so much more if they are working together than separately, says Levchenko.

“We’ve learned that there is a clear limit on what can happen in a cell, and we are actually quantifying for the first time what the cells can and can’t do,” says Levchenko. “A lot of people were surprised that this was even possible. This framework we’ve laid will allow us to test what kind of tricks cells use, other than being multicellular, to expand their decision repertoire.”

The first author on the study, Raymond Cheong, was responsible for much of the experimental and theoretical analysis. Other researchers involved included Alex Rhee and Chiaochun Joanne Wang of Johns Hopkins and Ilya Nemenman of Emory University.

The study was supported by the National Institutes of Health, the Medical Scientist Training Program at Johns Hopkins and the Los Alamos National Laboratory Directed Research and Development Program.

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>