Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood chromosome differences are linked to pancreatic cancer

24.10.2012
A new study shows that a blood marker is linked to pancreatic cancer, according to a study published today by scientists at the University of Wisconsin Carbone Cancer Center and Mayo Clinic.

First author Dr. Halcyon Skinner, assistant professor of population health sciences at the University of Wisconsin School of Medicine and Public Health, says the study is the first time pancreatic cancer risk has been linked to differences in telomeres' length in blood cells.

"This suggests a new avenue to identify those with pancreatic cancer or those at risk of developing the cancer in the future,'' he says.

Skinner's colleagues at Mayo Clinic took blood samples from more than 1,500 people – 499 of them with a diagnosis of pancreatic cancer and 963 of them cancer-free control subjects. Specifically, the scientists were interested in the length of the telomeres – the end caps on chromosomes – found in white blood cells. They found a direct relationship with the risk of pancreatic cancer: the shorter the telomeres, the more likely a person was to have pancreatic cancer.

Telomeres maintain the stability of genes, and are known to shorten with age as cells divide. People of the same chronological age can have vastly different telomere lengths. In other words, some people's cells can by viewed as biologically older than cells from other people the same age.

"We know that people with many factors that are classically unhealthy also tend to have shorter telomeres. Those who have had stressful lives, exposed to chronic inflammation, have poor glucose control or smoked cigarettes tend to have shorter telomeres, and that can set the stage for genetic damage,'' Skinner explains.

Shortened telomeres in the blood have already been associated with other types of cancer, including colon cancer.

"We found the same relationship with pancreatic cancer, and for the vast majority of our participants, there was a direct linear relationship," he says, "the shorter the telomere, the higher the likelihood of pancreatic cancer."

But because shorter telomere length is also associated with the development of other cancers and other diseases of aging, measurement of telomere length alone is not a specific marker for pancreatic cancer.

Dr. Lisa A. Boardman, of Mayo Clinic, who led the overall study, says that future studies need to address if telomere length and other markers of pancreatic cancer should be combined to create a test that could be used clinically.

Skinner and UW colleagues Ron Gangnon and Kristin Litzelman led the design and data analysis of the study. It is being published in Cancer Epidemiology, Biomarkers and Prevention, a journal of the American Association for Cancer Research.

Skinner's work was supported by the National Institutes of Health (K07 CA109361).

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>