Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Big data' for life sciences

06.11.2019

A human protein co-regulation map reveals new insights into protein functions

Proteins are key molecules in living cells. They are responsible for nearly every task of cellular life and are essential for the maintenance of the structure, function, and regulation of tissues and organs in the human body.


Co-regulation map shows associations between human proteins.

Credit: Michael Schrader - University of Exeter

The cells in the human body can form thousands of different types of proteins (the so called proteome), which perform a plethora of diverse functions, all crucial for cell viability and human health. Assigning functions to the vast array of proteins present in our cells remains a challenging task in cell biology.

Scientists have now produced a co-regulation map of the human proteome, which was able to capture relationships between proteins that do not physically interact or co-localize. This will enable the prediction and assignment of functions to uncharacterised human proteins. The co-regulation map can be explored at http://www.proteomeHD.net.

Many of the functions of human proteins are still unknown, but researchers at the Wellcome Centre for Cell Biology, University of Edinburgh and the Institute of Biotechnology, Technische Universität Berlin have applied large scale quantitative proteomics and machine-learning to produce a protein covariation dataset of the human proteome. The dataset forms the basis of a co-regulation map which can be used to predict the potential function of uncharacterized human proteins.

"In this study, we took thousands of mass spectrometry experiments that other laboratories had published over the past few years and re-purposed them in a way that was completely unrelated to what the original authors had intended. We used a machine-learning algorithm to mine this huge collection of data and managed to assign a biological function to hundreds of proteins (genes) that were previously uncharacterised", said Professor Juri Rappsilber and Dr. Georg Kustatscher, of the University of Edinburgh and TU Berlin.

Exploring the map revealed unexpected co-regulation partners, namely the peroxisomal membrane protein PEX11β with mitochondrial respiration factors. In cooperation with Professor Michael Schrader and his team at the University of Exeter, this led to the identification of a novel interaction between two crucial cellular organelles - mitochondria and peroxisomes.

"Peroxisomes and mitochondria in mammals are intimately linked and cooperate in the breakdown of fatty acids and cellular energy balance. Using live cell imaging we revealed that PEX11β mediates the formation of membrane protrusions, which emanate from peroxisomes and interact with mitochondria. They likely function in the metabolic cooperation and crosstalk between both organelles, and may facilitate transfer of metabolites during mitochondrial energy (ATP) production", said Professor Michael Schrader, of the University of Exeter.

The scientists at the University of Edinburgh created the website http://www.proteomeHD.net to allow users to search for a protein of interest, showing its position in the co-regulation map together with any co-regulation partners.

The online map is interactive and zoomable, making it easy to explore the neighbourhood of a query protein. It is designed to support researchers in exploring co-regulation data at multiple scales, to validate existing hypotheses or to create new ones.

"With an ever increasing amount of protein expression data being made available, protein co-expression analysis has huge potential for gene function annotation. In a time when "big data" becomes more and more relevant for life science, a key lessons we learned from this project is: never throw away your data - they can be re-purposed, recycled, and with the right tools there is plenty more information and knowledge that can be extracted from them", said Dr. Georg Kustatscher, of the University of Edinburgh.

###

The research was supported by the Wellcome Trust, the Biotechnology and Biological Sciences Research Council, and the EU Marie Sk?odowska-Curie Innovative Training Network PerICo.

The paper, published in the journal Nature Biotechnology, is entitled: "Co-regulation map of the human proteome enables identification of protein functions".

The authors were Georg Kustatscher, Piotr Grabowski, Tina A. Schrader, Josiah B. Passmore, Michael Schrader, and Juri Rappsilber.

Media Contact

Duncan Sandes
d.sandes@exeter.ac.uk
44-013-927-22391

 @uniofexeter

http://www.exeter.ac.uk 

Duncan Sandes | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41587-019-0298-5

More articles from Life Sciences:

nachricht Cell signalling breakthrough opens up new avenues for research
05.11.2019 | University of Liverpool

nachricht How cells stick together tightly
05.11.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Laser pulses create topological state in graphene

06.11.2019 | Materials Sciences

Distorted Atoms

06.11.2019 | Physics and Astronomy

Light-based 'tractor beam' assembles materials at the nanoscale

05.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>