Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI researchers uncover extensive RNA editing in a human transcriptome

13.02.2012
Study published in the journal Nature Biotechnology

Shenzhen, China – In a new study published online in Nature Biotechnology, researchers from BGI, the world's largest genomics organization, reported the evidence of extensive RNA editing in a human cell line by analysis of RNA-seq data, demonstrating the need for new robust methods to identify important post-transcriptional editing events.

RNA editing is a normal but not yet fully understood process in which small nucleotide changes occur after DNA has been transcribed into RNA. It is an integral step in generating diversity and plasticity of cellular RNA signature as a post-transciptional event that recodes hereditary information. RNA editing is an important area in the post-genomic era for its role in determining protein structure and function. It has become increasingly important in genetic research.

Last year, a study published in Science (Li, et al. Science, May 19, 2011) reported a large number of sequence differences between mRNA and DNA in the human transcriptome. This finding was startling because it implied that there might be a still undiscovered mechanism of 'RNA editing' that could disrupt the central dogma and affect our understanding of genetic variation. However, this view was strongly contested by other scientists because of the technical issue and lack of academic rigour, such as sequencing error or mis-mapping. In this latest study, BGI researchers developed a more rigorous pipeline for approaching these problems and answered some of the concerned questions, which contributed to paving way for the further studies of this field.

They obtained the whole-transcriptome data by RNA-seq from a lymphoblastoid cell line of a male Han Chinese individual (YH), whose genome sequence was previously reported as the first diploid genome of Han Chinese. RNA-seq, also known as "Whole Transcriptome Shotgun Sequencing", is a recently developed approach on transcriptome profiling that uses deep-sequencing technologies with the advantages of high-throughput data, low background, high sensitivity and repeatability. In a paper published in 2009 in Nature Reviews Genetics, RNA-seq is referred to as a revolutionary tool in transcriptomics.

"We used RNA-seq in the study to identify post-transcriptional editing events, and developed a computational and comprehensive pipeline to find the human RNA editing sites," said Zhiyu Peng, the leading author of the paper and Vice Director of Research & Cooperation Division of BGI. The pipeline was used to identify the extensive RNA editing from genome and whole transcriptome data by screening RNA-DNA differences of the same individual through successive quality control filters.

Through this pipeline, BGI researchers identified 22,688 RNA editing events, and found most editing events (~93%) convert adenosine (A) into inosine (I), which in turn is read as guanosine (G), in consistence with known editing mechanisms based on adenosine deaminase acting on RNA (ADAR). They also found 44 editing events in microRNAs (miRNA), suggesting there is a potential connection between RNA editing and miRNA-mediated regulation. Researchers also found in the study evidence of other types of nucleotide changes, but these were validated at lower rates.

"These findings demonstrate this multifilter molecular pipeline is an excellent approach in this study," said Peng. "With the multiple filters, false positive results can be controlled or eliminated while identifying RNA editing events, providing a more accurate and effective method to extensively analyze RNA editing. We now plan to apply this new methodology to larger-scale deep sequencing studies for more comprehensive analysis and profiling of editome, including studies with additional physiologically relevant samples."

"The evidence of extensive RNA editing identified in a human transcriptome underscores the necessity of an effective method to fully detect these events in order to further advance our understanding of human development and normal pathophysiological condition," said Jun Wang, Executive Director of BGI. "With continual improvement of the new approach, we believe this could be achieved in the near future."

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome. For more information about BGI, please visit www.genomics.cn.

Contact Information:

Zhiyu Peng
Vice Director of Research & Cooperation Division
BGI
pengzhiyu@genomics.cn
www.genomics.cn
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn
www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

Further reports about: BGI Biotechnology Chinese herbs Cooperation DNA Human vaccine Nature Immunology RNA RNA-seq

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>