Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI reports the completed sequence of foxtail millet genome

14.05.2012
The latest study was published online in Nature Biotechnology
BGI, the world's largest genomics organization, in cooperation with Zhangjiakou Academy of Agricultural Science, has completed the genome sequence and analysis of foxtail millet (Setaria italica), the second-most widely planted species of millet. This study provides an invaluable resource for the study and genetic improvement of foxtail millet and millet crops at a genome-wide level. Results of the latest study were published online today in Nature Biotechnology.

Foxtail millet is an important cereal crop providing food and feed in semi-arid areas. It is the top-one crop in ancient China. It promises to serve as an important model for comparative genomics and functional gene studies, due to its small genome size (~490M), self-pollination, rich genetic diversity (~6000 varieties), complete collection of germplasm, and the availability of efficient transformation platforms. It is also evolutionarily close to several important biofuel grasses, such as switchgrass and napier grass.

"The lower yield of traditional cultivars has largely limited cultivation and utilization of foxtail millet." said Dr. Gengyun Zhang, Vice President of BGI. "Hybrid cultivars, recently developed by Professor Zhihai Zhao in Zhangjiakou Agricultural Academy of Science, doubled the yield of foxtail millet. I expect that the results of this study could set an example of applying the genome sequence to better understanding and quicker developing new varieties of a neglected crop with higher yield, better grain quality and stress tolerance."

In this study, researchers from BGI carried out next-generation sequencing and de novo assembly for "Zhang gu", one strain of foxtail millet from Northern China. The final genome assembly was 423 Mb, and 38,801 protein-coding genes have been predicted, of which ~81% were expressed. They also developed a high density genetic linkage map using a set of genetic markers identified by resequencing another strain named "A2" and an F2 population of "Zhang gu" crossing A2. A2 is the widely used female strain of hybrid foxtail millet.

Comparing the foxtail millet genome and rice genome, researchers found the rules and changing tendency of the foxtail millet chromosomes, which are important for understanding the millet genome evolution. "We found nine foxtail millet chromosomes were formed after three chromosomal reshuffling events." said Dr. Zhang, "Of the three events, two occurred after divergence of foxtail millet from rice, followed by a specific reshuffling after divergence of millet from sorghum."

C4 plants are better adapted than C3 plants in environments with higher daytime temperature, intense sunlight, drought, or nitrogen or CO2 limitation. Foxtail millet is a diploid C4 panicoid crop species. With its genome available, researchers comprehensively analyzed the evolution of several key genes in C4 photosynthesis pathway. Results indicated that all the genes involved in C4 carbon fixation pathway also existed in C3 plants. Thus, researchers predicted that the emergence of C4 pathway could result from expressional and/or functional modifications of these genes.

The genome sequence of foxtail millet could facilitate mapping of quantitative trait loci. In this study, researchers used the foxtail millet genome to aid identification of herbicide resistant genes, and they accurately identified the gene for sethoxydim resistance.

"The decoding of whole genome sequence is an essential and important step to reveal the secrets of genetic control of crops, which could serve as an important platform for biological studies and breeding. " added by Dr. Zhang.

About BGI

BGI was founded in Beijing, China on September 9th, 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, based in Cambridge, MA and BGI Europe, based in Copenhagen. Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 170 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, 1000 genomes and human Gut metagenome. For more information about BGI, please visit www.genomics.cn.

Contact Information:

Gengyun Zhang
Vice President
BGI
zhanggengyun@genomics.cn
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>